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Getting Started

This chapter contains two examples to get you started doing image processing using
MATLAB® and the Image Processing Toolbox software. The examples contain cross-
references to other sections in the documentation manual that have in-depth discussions
on the concepts presented in the examples.

• “Image Processing Toolbox Product Description” on page 1-2
• “Configuration Notes” on page 1-3
• “Related Products” on page 1-4
• “Compilability” on page 1-5
• “Basic Image Import, Processing, and Export” on page 1-6
• “Basic Image Enhancement and Analysis Techniques” on page 1-13
• “Getting Help” on page 1-25
• “Acknowledgments” on page 1-27
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Image Processing Toolbox Product Description
Perform image processing, analysis, and algorithm development

Image Processing Toolbox provides a comprehensive set of reference-standard
algorithms, functions, and apps for image processing, analysis, visualization, and
algorithm development. You can perform image analysis, image segmentation, image
enhancement, noise reduction, geometric transformations, and image registration. Many
toolbox functions support multicore processors, GPUs, and C-code generation.

Image Processing Toolbox supports a diverse set of image types, including high dynamic
range, gigapixel resolution, embedded ICC profile, and tomographic. Visualization
functions and apps let you explore images and videos, examine a region of pixels, adjust
color and contrast, create contours or histograms, and manipulate regions of interest
(ROIs). The toolbox supports workflows for processing, displaying, and navigating large
images.

Key Features

• Image analysis, including segmentation, morphology, statistics, and measurement
• Image enhancement, filtering, and deblurring
• Geometric transformations and intensity-based image registration methods
• Image transforms, including FFT, DCT, Radon, and fan-beam projection
• Large image workflows, including block processing, tiling, and multiresolution display
• Visualization apps, including Image Viewer and Video Viewer
• Multicore- and GPU-enabled functions, and C-code generation support
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Configuration Notes

To determine if the Image Processing Toolbox software is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the version of
MATLAB you are running, including a list of all toolboxes installed on your system and
their version numbers. For a list of the new features in this version of the toolbox, see the
Release Notes documentation.

Many of the toolbox functions are MATLAB files with a series of MATLAB statements
that implement specialized image processing algorithms. You can view the MATLAB
code for these functions using the statement

type function_name

You can extend the capabilities of the toolbox by writing your own files, or by using the
toolbox in combination with other toolboxes, such as the Signal Processing Toolbox™
software and the Wavelet Toolbox™ software.

For information about installing the toolbox, see the installation guide.

For the most up-to-date information about system requirements, see the system
requirements page, available in the products area at the MathWorks Web site
(www.mathworks.com).

http://www.mathworks.com
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Related Products

MathWorks provides several products that are relevant to the kinds of tasks you can
perform with the Image Processing Toolbox software and that extend the capabilities
of MATLAB. For information about these related products, see www.mathworks.com/
products/image/related.html.

http://www.mathworks.com/products/image/related.html
http://www.mathworks.com/products/image/related.html
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Compilability

The Image Processing Toolbox software is compilable with the MATLAB Compiler™
except for the following functions that launch GUIs:

• cpselect

• implay

• imtool
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Basic Image Import, Processing, and Export

This example shows how to read an image into the workspace, adjust the contrast in the
image, and then write the adjusted image to a file.

Step 1: Read and Display an Image

First, clear the workspace of any variables and close open figure windows.

clear

close all

Read an image into the workspace, using the imread command. The example reads one
of the sample images included with the toolbox, an image of a young girl in a file named
pout.tif , and stores it in an array named I . imread infers from the file that the
graphics file format is Tagged Image File Format (TIFF).

I = imread('pout.tif');

Display the image, using the imshow function. You can also view an image in the Image
Viewer app. The imtool function opens the Image Viewer app which presents an
integrated environment for displaying images and performing some common image
processing tasks. The Image Viewer app provides all the image display capabilities
of imshow but also provides access to several other tools for navigating and exploring
images, such as scroll bars, the Pixel Region tool, Image Information tool, and the
Contrast Adjustment tool.

imshow(I)
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Step 2: Check How the Image Appears in the Workspace

Check how the imread function stores the image data in the workspace, using the whos
command. You can also check the variable in the Workspace Browser. The imread
function returns the image data in the variable I , which is a 291-by-240 element array of
uint8 data.
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whos

  Name        Size             Bytes  Class    Attributes

  I         291x240            69840  uint8              

Step 3: Improve Image Contrast

View the distribution of image pixel intensities. The image pout.tif is a somewhat low
contrast image. To see the distribution of intensities in the image, create a histogram
by calling the imhist function. (Precede the call to imhist with the figure command so
that the histogram does not overwrite the display of the image I in the current figure
window.) Notice how the histogram indicates that the intensity range of the image is
rather narrow. The range does not cover the potential range of [0, 255], and is missing
the high and low values that would result in good contrast.

figure

imhist(I)
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Improve the contrast in an image, using the histeq function. Histogram equalization
spreads the intensity values over the full range of the image. Display the image. (The
toolbox includes several other functions that perform contrast adjustment, including
imadjust and adapthisteq, and interactive tools such as the Adjust Contrast tool,
available in the Image Viewer.)

I2 = histeq(I);

figure

imshow(I2)
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Call the imhist function again to create a histogram of the equalized image I2 . If you
compare the two histograms, you can see that the histogram of I2 is more spread out
over the entire range than the histogram of I .

figure

imhist(I2)
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Step 4: Write the Adjusted Image to a Disk File

Write the newly adjusted image I2 to a disk file, using the imwrite function. This
example includes the filename extension '.png' in the file name, so the imwrite
function writes the image to a file in Portable Network Graphics (PNG) format, but you
can specify other formats.

imwrite (I2, 'pout2.png');

Step 5: Check the Contents of the Newly Written File

View what imwrite wrote to the disk file, using the imfinfo function. The imfinfo
function returns information about the image in the file, such as its format, size, width,
and height.
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imfinfo('pout2.png')

ans = 

                  Filename: 'C:\TEMP\Bdoc14b_152206_6100\tp7d117baf_15bf_4...'

               FileModDate: '20-Sep-2014 00:42:07'

                  FileSize: 36938

                    Format: 'png'

             FormatVersion: []

                     Width: 240

                    Height: 291

                  BitDepth: 8

                 ColorType: 'grayscale'

           FormatSignature: [137 80 78 71 13 10 26 10]

                  Colormap: []

                 Histogram: []

             InterlaceType: 'none'

              Transparency: 'none'

    SimpleTransparencyData: []

           BackgroundColor: []

           RenderingIntent: []

            Chromaticities: []

                     Gamma: []

               XResolution: []

               YResolution: []

            ResolutionUnit: []

                   XOffset: []

                   YOffset: []

                OffsetUnit: []

           SignificantBits: []

              ImageModTime: '20 Sep 2014 04:42:07 +0000'

                     Title: []

                    Author: []

               Description: []

                 Copyright: []

              CreationTime: []

                  Software: []

                Disclaimer: []

                   Warning: []

                    Source: []

                   Comment: []

                 OtherText: []
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Basic Image Enhancement and Analysis Techniques
This example shows how to enhance an image as a preprocessing step before analysis. In
this example, you correct the nonuniform background illumination and convert the image
into a binary image so that you can perform analysis of the image foreground objects.

Step 1: Read the Image into the Workspace

Read and display the grayscale image rice.png .

I = imread('rice.png');

imshow(I)
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Step 2: Prepocess the Image to Enable Analysis

In the sample image, the background illumination is brighter in the center of the image
than at the bottom. As a preprocessing step before analysis, make the background
uniform and then convert the image into a binary image. To make the background
illumination more uniform, create an approximation of the background as a separate
image and then subtract this approximation from the original image.

As a first step to creating a background approximation image, remove all the foreground
(rice grains) using morphological opening. The opening operation has the effect of
removing objects that cannot completely contain the structuring element. To remove the
rice grains from the image, the structuring element must be sized so that it cannot fit
entirely inside a single grain of rice. The example calls the strel function to create a
disk-shaped structuring element with a radius of 15.

background = imopen(I,strel('disk',15));

View the background approximation image as a surface to see where illumination
varies. The surf command creates colored parametric surfaces that enable you to view
mathematical functions over a rectangular region. Because the surf function requires
data of class double , you first need to convert background using the double command.
The example uses indexing syntax to view only 1 out of 8 pixels in each direction;
otherwise, the surface plot would be too dense. The example also sets the scale of the
plot to better match the range of the uint8 data and reverses the y-axis of the display
to provide a better view of the data. (The pixels at the bottom of the image appear at the
front of the surface plot.) In the surface display, [0, 0] represents the origin, or upper-left
corner of the image. The highest part of the curve indicates that the highest pixel values
of background (and consequently rice.png ) occur near the middle rows of the image.
The lowest pixel values occur at the bottom of the image.

figure

surf(double(background(1:8:end,1:8:end))),zlim([0 255]);

set(gca,'ydir','reverse');
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Subtract the background approximation image, background , from the original image, I,
and view the resulting image. After subtracting the adjusted background image from the
original image, the resulting image has a uniform background but is now a bit dark for
analysis

I2 = I - background;

imshow(I2)
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Use imadjust to increase the contrast of the processed image I2 by saturating 1% of
the data at both low and high intensities and by stretching the intensity values to fill the
uint8 dynamic range.

I3 = imadjust(I2);

imshow(I3);
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Create a binary version of the processed image so you can use toolbox functions for
analysis. Use the im2bw function to convert the grayscale image into a binary image by
using thresholding. The function graythresh automatically computes an appropriate
threshold to use to convert the grayscale image to binary. Remove background noise with
the bwareaopen function.

level = graythresh(I3);

bw = im2bw(I3,level);

bw = bwareaopen(bw, 50);

imshow(bw)
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Step 3: Perform Analysis of Objects in the Image

Now that you have created a binary version of the original image you can perform
analysis of objects in the image.

Find all the connected components (objects) in the binary image. The accuracy of your
results depends on the size of the objects, the connectivity parameter (4, 8, or arbitrary),
and whether or not any objects are touching (in which case they could be labeled as one
object). Some of the rice grains in the binary image bw are touching.

cc = bwconncomp(bw, 4)
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cc.NumObjects

cc = 

    Connectivity: 4

       ImageSize: [256 256]

      NumObjects: 95

    PixelIdxList: {1x95 cell}

ans =

    95

View the rice grain that is labeled 50 in the image.

grain = false(size(bw));

grain(cc.PixelIdxList{50}) = true;

imshow(grain);
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Visualize all the connected components in the image. First, create a label matrix, and
then display the label matrix as a pseudocolor indexed image. Use labelmatrix to
create a label matrix from the output of bwconncomp . Note that labelmatrix stores
the label matrix in the smallest numeric class necessary for the number of objects. Since
bw contains only 95 objects, the label matrix can be stored as uint8 . In the pseudocolor
image, the label identifying each object in the label matrix maps to a different color in
an associated colormap matrix. Use label2rgb to choose the colormap, the background
color, and how objects in the label matrix map to colors in the colormap.

labeled = labelmatrix(cc);

RGB_label = label2rgb(labeled, @spring, 'c', 'shuffle');
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imshow(RGB_label)

Compute the area of each object in the image using regionprops. Each rice grain is one
connected component in the cc structure.

graindata = regionprops(cc, 'basic')

graindata = 

95x1 struct array with fields:
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    Area

    Centroid

    BoundingBox

Find the area of the 50th component, using dot notation to access the Area field in the
50th element of graindata .

graindata(50).Area

ans =

   194

Create a vector grain_areas to hold the area measurement of each object (rice grain).

grain_areas = [graindata.Area];

Find the rice grain with the smallest area.

[min_area, idx] = min(grain_areas)

grain = false(size(bw));

grain(cc.PixelIdxList{idx}) = true;

imshow(grain);

min_area =

    61

idx =

    16
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Using the hist command to create a histogram of rice grain areas.

nbins = 20;

figure, hist(grain_areas, nbins)

title('Histogram of Rice Grain Area');
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Getting Help

In this section...

“Product Documentation” on page 1-25
“Image Processing Examples” on page 1-25
“MATLAB Newsgroup” on page 1-26

Product Documentation

The Image Processing Toolbox documentation is available online in both HTML and
PDF formats. To access the HTML help, select Help from the menu bar of the MATLAB
desktop. In the Help Navigator pane, click the Contents tab and expand the Image
Processing Toolbox topic in the list.

To access the PDF help, click Image Processing Toolbox in the Contents tab of the
Help browser and go to the link under Printable (PDF) Documentation on the Web. (Note
that to view the PDF help, you must have Adobe® Acrobat® Reader installed.)

For reference information about any of the Image Processing Toolbox functions, type in
the MATLAB command window

help functionname

For example,

help imtool

Image Processing Examples

The Image Processing Toolbox software is supported by a full complement of example
applications. These are very useful as templates for your own end-user applications, or
for seeing how to use and combine your toolbox functions for powerful image analysis and
enhancement.

To view all the examples, call the iptdemos function. This displays an HTML page in
the MATLAB Help browser that lists all the examples.

The toolbox examples are located in the folder
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matlabroot\toolbox\images\imdata

where matlabroot represents your MATLAB installation folder.

MATLAB Newsgroup

If you read newsgroups on the Internet, you might be interested in the MATLAB
newsgroup (comp.soft-sys.matlab). This newsgroup gives you access to an active
MATLAB user community. It is an excellent way to seek advice and to share algorithms,
sample code, and MATLAB files with other MATLAB users.
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Introduction

This chapter introduces you to the fundamentals of image processing using MATLAB and
the Image Processing Toolbox software.

• “Images in MATLAB” on page 2-2
• “Expressing Image Locations” on page 2-3
• “Image Types in the Toolbox” on page 2-9
• “Converting Between Image Types” on page 2-16
• “Converting Between Image Classes” on page 2-18
• “Process Multi-Frame Image Arrays” on page 2-20
• “Perform an Operation on a Sequence of Images” on page 2-21
• “What is an Image Sequence?” on page 2-22
• “Toolbox Functions That Work with Image Sequences” on page 2-23
• “Image Arithmetic” on page 2-26
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Images in MATLAB

The basic data structure in MATLAB is the array, an ordered set of real or complex
elements. This object is naturally suited to the representation of images, real-valued
ordered sets of color or intensity data.

MATLAB stores most images as two-dimensional arrays (i.e., matrices), in which each
element of the matrix corresponds to a single pixel in the displayed image. (Pixel is
derived from picture element and usually denotes a single dot on a computer display.)

For example, an image composed of 200 rows and 300 columns of different colored dots
would be stored in MATLAB as a 200-by-300 matrix. Some images, such as truecolor
images, require a three-dimensional array, where the first plane in the third dimension
represents the red pixel intensities, the second plane represents the green pixel
intensities, and the third plane represents the blue pixel intensities. This convention
makes working with images in MATLAB similar to working with any other type of
matrix data, and makes the full power of MATLAB available for image processing
applications.
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Expressing Image Locations

In this section...

“Pixel Indices” on page 2-3
“Spatial Coordinates” on page 2-4

Pixel Indices

Often, the most convenient method for expressing locations in an image is to use pixel
indices. The image is treated as a grid of discrete elements, ordered from top to bottom
and left to right, as illustrated by the following figure.

Pixel Indices

For pixel indices, the row increases downward, while the column increases to the right.
Pixel indices are integer values, and range from 1 to the length of the row or column.

There is a one-to-one correspondence between pixel indices and subscripts for the first
two matrix dimensions in MATLAB. For example, the data for the pixel in the fifth row,
second column is stored in the matrix element (5,2). You use normal MATLAB matrix
subscripting to access values of individual pixels. For example, the MATLAB code

I(2,15)

returns the value of the pixel at row 2, column 15 of the image I. Similarly, the MATLAB
code
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RGB(2,15,:) 

returns the R, G, B values of the pixel at row 2, column 15 of the image RGB.

The correspondence between pixel indices and subscripts for the first two matrix
dimensions in MATLAB makes the relationship between an image's data matrix and the
way the image is displayed easy to understand.

Spatial Coordinates

Another method for expressing locations in an image is to use a system of continuously
varying coordinates rather than discrete indices. This lets you consider an image as
covering a square patch, for example. In a spatial coordinate system like this, locations
in an image are positions on a plane, and they are described in terms of x and y (not row
and column as in the pixel indexing system). From this Cartesian perspective, an (x,y)
location such as (3.2,5.3) is meaningful, and is distinct from pixel (5,3).

Intrinsic Coordinates

By default, the toolbox uses a spatial coordinate system for an image that corresponds
to the image’s pixel indices. It's called the intrinsic coordinate system and is illustrated
in the following figure. Notice that y increases downward, because this orientation is
consistent with the way in which digital images are typically viewed.

Intrinsic Coordinate System

The intrinsic coordinates (x,y) of the center point of any pixel are identical to the column
and row indices for that pixel. For example, the center point of the pixel in row 5, column
3 has spatial coordinates x = 3.0, y = 5.0. This correspondence simplifies many toolbox
functions considerably. Be aware, however, that the order of coordinate specification
(3.0,5.0) is reversed in intrinsic coordinates relative to pixel indices (5,3).
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Several functions primarily work with spatial coordinates rather than pixel indices, but
as long as you are using the default spatial coordinate system (intrinsic coordinates), you
can specify locations in terms of their columns (x) and rows (y).

When looking at the intrinsic coordinate system, note that the upper left corner of the
image is located at (0.5,0.5), not at (0,0), and the lower right corner of the image is
located at (numCols + 0.5, numRows + 0.5), where numCols and numRows are the number
of rows and columns in the image. In contrast, the upper left pixel is pixel (1,1) and the
lower right pixel is pixel (numRows, numCols). The center of the upper left pixel is (1.0,
1.0) and the center of the lower right pixel is (numCols, numRows). In fact, the center
coordinates of every pixel are integer valued. The center of the pixel with indices (r, c) —
where r and c are integers by definition — falls at the point x = c, y = r in the intrinsic
coordinate system.

World Coordinates

In some situations, you might want to use a world coordinate system (also called a
nondefault spatial coordinate system). For example, you could shift the origin by
specifying that the upper left corner of an image is the point (19.0,7.5), rather than
(0.5,0.5). Or, you might want to specify a coordinate system in which every pixel covers a
5-by-5 meter patch on the ground.

One way to define a world coordinate system for an image is to specify the XData and
YData image properties for the image. The XData and YData image properties are
two-element vectors that control the range of coordinates spanned by the image. When
you do this, the MATLAB axes coordinates become identical to the world (nondefault)
coordinates. If you do not specify XData and YData, the axes coordinates are identical
to the intrinsic coordinates of the image. By default, for an image A, XData is [1
size(A,2)], and YData is [1 size(A,1)]. With this default, the world coordinate
system and intrinsic coordinate system coincide perfectly.

For example, if A is a 100 row by 200 column image, the default XData is [1 200], and
the default YData is [1 100]. The values in these vectors are actually the coordinates for
the center points of the first and last pixels (not the pixel edges), so the actual coordinate
range spanned is slightly larger. For instance, if XData is [1 200], the interval in X
spanned by the image is [0.5 200.5].

It’s also possible to set XData or YData such that the x-axis or y-axis is reversed. You’d
do this by placing the larger value first. (For example, set the YData to [1000 1].) This is
a common technique to use with geospatial data.

These commands display an image using nondefault XData and YData.
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A = magic(5);

x = [19.5 23.5];

y = [8.0 12.0];

image(A,'XData',x,'YData',y), axis image, colormap(jet(25))

Specifying Coordinate Information

To specify a world (nondefault spatial) coordinate system for an image, use the spatial
referencing objects imref2d and imref3d. Spatial referencing objects let you define
the location of the image in a world coordinate system and specify the image resolution,
including nonsquare pixel shapes. These objects also support methods for converting
between the world, intrinsic, and subscript coordinate systems. Several toolbox functions
accept or return spatial referencing objects: imwarp, imshow, imshowpair, imfuse,
imregtform, and imregister.

This example creates a spatial referencing object associated with a 2-by-2 image where
the world extent is 4 units/pixel in the x direction and 2 units/pixel in the y direction.
The example creates the object, specifying the pixels dimensions as arguments but does
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not specify world limits in the x and y directions. You could specify other information
when creating an object, see imref2d for more information.

I = [1  2; 3 4]

R = imref2d(size(I),4,2)

R = 

 imref2d with properties:

           XWorldLimits: [2 10]

           YWorldLimits: [1 5]

              ImageSize: [2 2]

    PixelExtentInWorldX: 4

    PixelExtentInWorldY: 2

    ImageExtentInWorldX: 8

    ImageExtentInWorldY: 4

       XIntrinsicLimits: [0.5000 2.5000]

       YIntrinsicLimits: [0.5000 2.5000]

The imref2d object contains information about the image, some of it provided by you
and some of it derived by the object. The following table provides descriptions of spatial
referencing object fields.

Field Description

XWorldLimits Upper and lower bounds along the X dimension in world
coordinates (nondefault spatial coordinates)

YWorldLimits Upper and lower bounds along the Y dimension in world
coordinates (nondefault spatial coordinates)

ImageSize Size of the image, returned by the size function.
PixelExtentInWorldX Size of pixel along the X dimension
PixelExtentInWorldY Size of pixel along the Y dimension
ImageExtentInWorldX Size of image along the X dimension
ImageExtentInWorldY Size of image along the Y dimension
XIntrinsicLimits Upper and lower bounds along X dimension in intrinsic

coordinates (default spatial coordinates)
YIntrinsicLimits Upper and lower bounds along Y dimension in intrinsic

coordinates (default spatial coordinates).
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The following figure illustrates how these properties map to elements of an image.
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You can also use the XData and YData properties to define a world (nondefault spatial)
coordinate system. Several toolbox functions accept this data as arguments and returns
coordinates in the world coordinate system. These functions are: bwselect, imcrop,
impixel, roifill, roipoly, and imtransform)
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Image Types in the Toolbox

In this section...

“Overview of Image Types” on page 2-9
“Binary Images” on page 2-10
“Indexed Images” on page 2-10
“Grayscale Images” on page 2-11
“Truecolor Images” on page 2-12

Overview of Image Types

The Image Processing Toolbox software defines four basic types of images, summarized
in the following table. These image types determine the way MATLAB interprets data
matrix elements as pixel intensity values. For information about converting between
image types, see “Converting Between Image Types” on page 2-16.

Image Type Interpretation

Binary
(Also known as a bilevel
image)

Logical array containing only 0s and 1s, interpreted as black
and white, respectively. See “Binary Images” on page 2-10
for more information.

Indexed
(Also known as a
pseudocolor image)

Array of class logical, uint8, uint16, single, or double
whose pixel values are direct indices into a colormap. The
colormap is an m-by-3 array of class double.

For single or double arrays, integer values range from
[1, p]. For logical, uint8, or uint16 arrays, values range
from [0, p-1]. See “Indexed Images” on page 2-10 for more
information.

Grayscale
(Also known as an
intensity, gray scale, or
gray level image)

Array of class uint8, uint16, int16, single, or double
whose pixel values specify intensity values.

For single or double arrays, values range from [0, 1].
For uint8, values range from [0,255]. For uint16, values
range from [0, 65535]. For int16, values range from [-32768,
32767]. See “Grayscale Images” on page 2-11 for more
information.
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Image Type Interpretation

Truecolor
(Also known as an RGB
image )

m-by-n-by-3 array of class uint8, uint16, single, or
double whose pixel values specify intensity values.

For single or double arrays, values range from [0, 1]. For
uint8, values range from [0, 255]. For uint16, values range
from [0, 65535]. See “Truecolor Images” on page 2-12 for
more information.

Binary Images

In a binary image, each pixel assumes one of only two discrete values: 1 or 0. A binary
image is stored as a logical array. By convention, this documentation uses the variable
name BW to refer to binary images.

The following figure shows a binary image with a close-up view of some of the pixel
values.

Pixel Values in a Binary Image

Indexed Images

An indexed image consists of an array and a colormap matrix. The pixel values in the
array are direct indices into a colormap. By convention, this documentation uses the
variable name X to refer to the array and map to refer to the colormap.

The colormap matrix is an m-by-3 array of class double containing floating-point values
in the range [0,1]. Each row of map specifies the red, green, and blue components of a
single color. An indexed image uses direct mapping of pixel values to colormap values.
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The color of each image pixel is determined by using the corresponding value of X as an
index into map.

A colormap is often stored with an indexed image and is automatically loaded with
the image when you use the imread function. After you read the image and the
colormap into the MATLAB workspace as separate variables, you must keep track of the
association between the image and colormap. However, you are not limited to using the
default colormap--you can use any colormap that you choose.

The relationship between the values in the image matrix and the colormap depends
on the class of the image matrix. If the image matrix is of class single or double, it
normally contains integer values 1 through p, where p is the length of the colormap. the
value 1 points to the first row in the colormap, the value 2 points to the second row, and
so on. If the image matrix is of class logical, uint8 or uint16, the value 0 points to
the first row in the colormap, the value 1 points to the second row, and so on.

The following figure illustrates the structure of an indexed image. In the figure, the
image matrix is of class double, so the value 5 points to the fifth row of the colormap.

Pixel Values Index to Colormap Entries in Indexed Images

Grayscale Images

A grayscale image (also called gray-scale, gray scale, or gray-level) is a data matrix
whose values represent intensities within some range. MATLAB stores a grayscale image
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as an individual matrix, with each element of the matrix corresponding to one image
pixel. By convention, this documentation uses the variable name I to refer to grayscale
images.

The matrix can be of class uint8, uint16, int16, single, or double. While grayscale
images are rarely saved with a colormap, MATLAB uses a colormap to display them.

For a matrix of class single or double, using the default grayscale colormap, the
intensity 0 represents black and the intensity 1 represents white. For a matrix of type
uint8, uint16, or int16, the intensity intmin(class(I)) represents black and the
intensity intmax(class(I)) represents white.

The figure below depicts a grayscale image of class double.

Pixel Values in a Grayscale Image Define Gray Levels

Truecolor Images

A truecolor image is an image in which each pixel is specified by three values — one each
for the red, blue, and green components of the pixel's color. MATLAB store truecolor
images as an m-by-n-by-3 data array that defines red, green, and blue color components
for each individual pixel. Truecolor images do not use a colormap. The color of each pixel
is determined by the combination of the red, green, and blue intensities stored in each
color plane at the pixel's location.
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Graphics file formats store truecolor images as 24-bit images, where the red, green,
and blue components are 8 bits each. This yields a potential of 16 million colors. The
precision with which a real-life image can be replicated has led to the commonly used
term truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a truecolor
array of class single or double, each color component is a value between 0 and 1. A
pixel whose color components are (0,0,0) is displayed as black, and a pixel whose color
components are (1,1,1) is displayed as white. The three color components for each pixel
are stored along the third dimension of the data array. For example, the red, green, and
blue color components of the pixel (10,5) are stored in RGB(10,5,1), RGB(10,5,2), and
RGB(10,5,3), respectively.

The following figure depicts a truecolor image of class double.
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The Color Planes of a Truecolor Image

To determine the color of the pixel at (2,3), you would look at the RGB triplet stored in
(2,3,1:3). Suppose (2,3,1) contains the value 0.5176, (2,3,2) contains 0.1608, and (2,3,3)
contains 0.0627. The color for the pixel at (2,3) is

0.5176 0.1608 0.0627

To further illustrate the concept of the three separate color planes used in a truecolor
image, the code sample below creates a simple image containing uninterrupted areas
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of red, green, and blue, and then creates one image for each of its separate color planes
(red, green, and blue). The example displays each color plane image separately, and also
displays the original image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);

R=RGB(:,:,1);

G=RGB(:,:,2);

B=RGB(:,:,3);

imshow(R)

figure, imshow(G)

figure, imshow(B)

figure, imshow(RGB)

The Separated Color Planes of an RGB Image

Notice that each separated color plane in the figure contains an area of white. The white
corresponds to the highest values (purest shades) of each separate color. For example, in
the Red Plane image, the white represents the highest concentration of pure red values.
As red becomes mixed with green or blue, gray pixels appear. The black region in the
image shows pixel values that contain no red values, i.e., R == 0.
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Converting Between Image Types

The toolbox includes many functions that you can use to convert an image from one type
to another, listed in the following table. For example, if you want to filter a color image
that is stored as an indexed image, you must first convert it to truecolor format. When
you apply the filter to the truecolor image, MATLAB filters the intensity values in the
image, as is appropriate. If you attempt to filter the indexed image, MATLAB simply
applies the filter to the indices in the indexed image matrix, and the results might not be
meaningful.

You can perform certain conversions just using MATLAB syntax. For example, you
can convert a grayscale image to truecolor format by concatenating three copies of the
original matrix along the third dimension.

RGB = cat(3,I,I,I);

The resulting truecolor image has identical matrices for the red, green, and blue planes,
so the image displays as shades of gray.

In addition to these image type conversion functions, there are other functions that
return a different image type as part of the operation they perform. For example, the
region of interest functions return a binary image that you can use to mask an image for
filtering or for other operations.

Note When you convert an image from one format to another, the resulting image might
look different from the original. For example, if you convert a color indexed image to a
grayscale image, the resulting image displays as shades of grays, not color.

Function Description

demosaic Convert Bayer pattern encoded image to truecolor (RGB) image.
dither Use dithering to convert a grayscale image to a binary image or to

convert a truecolor image to an indexed image.
gray2ind Convert a grayscale image to an indexed image.
grayslice Convert a grayscale image to an indexed image by using multilevel

thresholding.
im2bw Convert a grayscale image, indexed image, or truecolor image, to a

binary image, based on a luminance threshold.



 Converting Between Image Types

2-17

Function Description

ind2gray Convert an indexed image to a grayscale image.
ind2rgb Convert an indexed image to a truecolor image.
mat2gray Convert a data matrix to a grayscale image, by scaling the data.
rgb2gray Convert a truecolor image to a grayscale image.

Note: To work with images that use other color spaces, such as HSV,
first convert the image to RGB, process the image, and then convert
it back to the original color space. For more information about color
space conversion routines, see “Color”.

rgb2ind Convert a truecolor image to an indexed image.
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Converting Between Image Classes

In this section...

“Overview of Image Class Conversions” on page 2-18
“Losing Information in Conversions” on page 2-18
“Converting Indexed Images” on page 2-18

Overview of Image Class Conversions

You can convert uint8 and uint16 image data to double using the MATLAB double
function. However, converting between classes changes the way MATLAB and the
toolbox interpret the image data. If you want the resulting array to be interpreted
properly as image data, you need to rescale or offset the data when you convert it.

For easier conversion of classes, use one of these functions: im2uint8, im2uint16,
im2int16, im2single, or im2double. These functions automatically handle the
rescaling and offsetting of the original data of any image class. For example, this
command converts a double-precision RGB image with data in the range [0,1] to a uint8
RGB image with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Losing Information in Conversions

When you convert to a class that uses fewer bits to represent numbers, you generally
lose some of the information in your image. For example, a uint16 grayscale image is
capable of storing up to 65,536 distinct shades of gray, but a uint8 grayscale image can
store only 256 distinct shades of gray. When you convert a uint16 grayscale image to a
uint8 grayscale image, im2uint8 quantizes the gray shades in the original image. In
other words, all values from 0 to 127 in the original image become 0 in the uint8 image,
values from 128 to 385 all become 1, and so on.

Converting Indexed Images

It is not always possible to convert an indexed image from one storage class to another.
In an indexed image, the image matrix contains only indices into a colormap, rather than
the color data itself, so no quantization of the color data is possible during the conversion.
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For example, a uint16 or double indexed image with 300 colors cannot be converted
to uint8, because uint8 arrays have only 256 distinct values. If you want to perform
this conversion, you must first reduce the number of the colors in the image using
the imapprox function. This function performs the quantization on the colors in the
colormap, to reduce the number of distinct colors in the image. See “Reducing Colors
Using imapprox” on page 14-9 for more information.
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Process Multi-Frame Image Arrays

The toolbox includes two functions, immovie and montage, that work with a specific
type of multi-dimensional array called a multi-frame array. In this array, images, called
frames in this context, are concatenated along the fourth dimension. Multi-frame arrays
are either m-by-n-by-1-by-p, for grayscale, binary, or indexed images, or m-by-n-by-3-
by-p, for truecolor images, where p is the number of frames.

For example, a multi-frame array containing five, 480-by-640 grayscale or indexed
images would be 480-by-640-by-1-by-5. An array with five 480-by-640 truecolor images
would be 480-by-640-by-3-by-5.

Note To process a multi-frame array of grayscale images as an image sequence, you can
use the squeeze function to remove the singleton dimension.

You can use the cat command to create a multi-frame array. For example, the following
stores a group of images (A1, A2, A3, A4, and A5) in a single array.

A = cat(4,A1,A2,A3,A4,A5)

You can also extract frames from a multiframe image. For example, if you have a
multiframe image MULTI, this command extracts the third frame.

FRM3 = MULTI(:,:,:,3)

Note that, in a multiframe image array, each image must be the same size and have the
same number of planes. In a multiframe indexed image, each image must also use the
same colormap.
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Perform an Operation on a Sequence of Images

This example shows how to perform an operation on a sequence of images. The example
creates an array of images and passes the entire array to the stdfilt function to
perform standard deviation filtering on each image in the sequence.)

Create an array of file names.

fileFolder = fullfile(matlabroot,'toolbox','images','imdata');

dirOutput = dir(fullfile(fileFolder,'AT3_1m4_*.tif'));

fileNames = {dirOutput.name}'

numFrames = numel(fileNames)

Preallocate an m-by-n-by-p array and read images into the array.

I = imread(fileNames{1});

sequence = zeros([size(I) numFrames],class(I));

sequence(:,:,1) = I;

%

for p = 2:numFrames

    sequence(:,:,p) = imread(fileNames{p}); 

end

Process each image in the sequence, performing standard deviation filtering, and view
the results. Note that, to use stdfilt with an image sequence, you must specify the
nhood argument, passing a 2-D neighborhood.

sequenceNew = stdfilt(sequence,ones(3));

figure;

for k = 1:numFrames

      imshow(sequence(:,:,k));

      title(sprintf('Original Image # %d',k));

      pause(1);

      imshow(sequenceNew(:,:,k),[]);

      title(sprintf('Processed Image # %d',k));

      pause(1);

end
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What is an Image Sequence?

Some applications work with collections of images related by time, such as frames in a
movie, or by spatial location, such as magnetic resonance imaging (MRI) slices. These
collections of images are referred to by a variety of names, such as image sequences,
image stacks, or videos.

The ability to create N-dimensional arrays can provide a convenient way to store image
sequences. For example, an m-by-n-by-p array can store an array of p two-dimensional
images, such as grayscale or binary images, as shown in the following figure. An m-by-n-
by-3-by-p array can store truecolor images where each image is made up of three planes.

Multidimensional Array Containing an Image Sequence

The Image Viewer app and imshow can display one frame at a time, using standard
MATLAB array indexing syntax. To animate an image sequence or provide navigation
within the sequence, use the Video Viewer app (implay). The Video Viewer app provides
playback controls that you can use to navigate among the frames in the sequence. To
get a static view of all the frames in an image sequence at one time, use the montage
function.
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Toolbox Functions That Work with Image Sequences

Many toolbox functions can operate on multi-dimensional arrays and, consequently, can
operate on image sequences. (For more information, see “What is an Image Sequence?”
on page 2-22.) For example, if you pass a multi-dimensional array to the imtransform
function, it applies the same 2-D transformation to all 2-D planes along the higher
dimension.

Some toolbox functions that accept multi-dimensional arrays, however, do not by default
interpret an m-by-n-by-p or an m-by-n-by-3-by-p array as an image sequence. To use
these functions with image sequences, you must use particular syntax and be aware
of other limitations. The following table lists these toolbox functions and provides
guidelines about how to use them to process image sequences. For information about
displaying image sequences, see “View Image Sequences in Video Viewer App”.

Function Image Sequence
Dimensions

Guideline When Used with an Image
Sequence

bwlabeln m-by-n-by-p only Must use the bwlabeln(BW,conn)
syntax with a 2-D connectivity.

deconvblind m-by-n-by-p or
m-by-n-by-3-by-p

PSF argument can be either 1-D or 2-D.

deconvlucy m-by-n-by-p or
m-by-n-by-3-by-p

PSF argument can be either 1-D or 2-D.

edgetaper m-by-n-by-p or
m-by-n-by-3-by-p

PSF argument can be either 1-D or 2-D.

entropyfilt m-by-n-by-p only nhood argument must be 2-D.
imabsdiff m-by-n-by-p or

m-by-n-by-3-by-p
Image sequences must be the same size.

imadd m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same size.
Cannot add scalar to image sequence.

imbothat m-by-n-by-p only SE argument must be 2-D.
imclose m-by-n-by-p only SE argument must be 2-D.
imdilate m-by-n-by-p only SE argument must be 2-D.
imdivide m-by-n-by-p or

m-by-n-by-3-by-p
Image sequences must be the same size.
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Function Image Sequence
Dimensions

Guideline When Used with an Image
Sequence

imerode m-by-n-by-p only SE argument must be 2-D.
imextendedmax m-by-n-by-p only Must use the

imextendedmax(I,h,conn) syntax
with a 2-D connectivity.

imextendedmin m-by-n-by-p only Must use the
imextendedmin(I,h,conn) syntax
with a 2-D connectivity.

imfilter m-by-n-by-p or
m-by-n-by-3-by-p

With grayscale images, h can be 2-D.
With truecolor images (RGB), h can be 2-
D or 3-D.

imhmax m-by-n-by-p only Must use the imhmax(I,h,conn) syntax
with a 2-D connectivity.

imhmin m-by-n-by-p only Must use the imhmin(I,h,conn) syntax
with a 2-D connectivity.

imlincomb m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same size.

immultiply m-by-n-by-p or
m-by-n-by-3-by-p

Image sequences must be the same size.

imopen m-by-n-by-p only SE argument must be 2-D.
imregionalmax m-by-n-by-p only Must use the imextendedmax(I,conn)

syntax with a 2-D connectivity.
imregionalmin m-by-n-by-p only Must use the imextendedmin(I,conn)

syntax with a 2-D connectivity.
imsubtract m-by-n-by-p or

m-by-n-by-3-by-p
Image sequences must be the same size.

imtophat m-by-n-by-p only SE argument must be 2-D.
imwarp m-by-n-by-p or

m-by-n-by-3-by-p
TFORM argument must be 2-D.

padarray m-by-n-by-p or
m-by-n-by-3-by-p

PADSIZE argument must be a two-
element vector.

rangefilt m-by-n-by-p only NHOOD argument must be 2-D.
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Function Image Sequence
Dimensions

Guideline When Used with an Image
Sequence

stdfilt m-by-n-by-p only NHOOD argument must be 2-D.
tformarray m-by-n-by-p or

m-by-n-by-3-by-p
• T must be 2-D to 2-D (compatible with

imtransform).
• R must be 2-D.
• TDIMS_A and TDIMS_B must be 2-D,

i.e., [2 1] or [1 2].
• TSIZE_B must be a two-element array

[D1 D2], where D1 and D2 are the
first and second transform dimensions
of the output space.

• TMAP_B must be [TSIZE_B 2].
• F can be a scalar or a p-by-1 array,

for m-by-n-by-p arrays. Or F can be
a scalar, 1-by-p array; 3-by-1 array;
or 3-by-p array, for m-by-n-by-3-by-p
arrays.

watershed m-by-n-by-p only Must use watershed(I,conn) syntax
with a 2-D connectivity.
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Image Arithmetic

In this section...

“Overview of Image Arithmetic Functions” on page 2-26
“Image Arithmetic Saturation Rules” on page 2-26
“Nesting Calls to Image Arithmetic Functions” on page 2-27

Overview of Image Arithmetic Functions

Image arithmetic is the implementation of standard arithmetic operations, such as
addition, subtraction, multiplication, and division, on images. Image arithmetic has
many uses in image processing both as a preliminary step in more complex operations
and by itself. For example, image subtraction can be used to detect differences between
two or more images of the same scene or object.

You can do image arithmetic using the MATLAB arithmetic operators. The Image
Processing Toolbox software also includes a set of functions that implement arithmetic
operations for all numeric, nonsparse data types. The toolbox arithmetic functions accept
any numeric data type, including uint8, uint16, and double, and return the result
image in the same format. The functions perform the operations in double precision, on
an element-by-element basis, but do not convert images to double-precision values in the
MATLAB workspace. Overflow is handled automatically. The functions saturate return
values to fit the data type. For more information, see these additional topics:

Note On Intel® architecture processors, the image arithmetic functions can take
advantage of the Intel Integrated Performance Primitives (Intel IPP) library, thus
accelerating their execution time. The Intel IPP library is only activated, however, when
the data passed to these functions is of specific classes. See the reference pages for the
individual arithmetic functions for more information.

Image Arithmetic Saturation Rules

The results of integer arithmetic can easily overflow the data type allotted for storage.
For example, the maximum value you can store in uint8 data is 255. Arithmetic
operations can also result in fractional values, which cannot be represented using integer
arrays.
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MATLAB arithmetic operators and the Image Processing Toolbox arithmetic functions
use these rules for integer arithmetic:

• Values that exceed the range of the integer type are saturated to that range.
• Fractional values are rounded.

For example, if the data type is uint8, results greater than 255 (including Inf) are set to
255. The following table lists some additional examples.

Result Class Truncated Value

300 uint8 255
-45 uint8 0
10.5 uint8 11

Nesting Calls to Image Arithmetic Functions

You can use the image arithmetic functions in combination to perform a series of
operations. For example, to calculate the average of two images,

C
A B

=

+

2

You could enter

I = imread('rice.png');

I2 = imread('cameraman.tif');

K = imdivide(imadd(I,I2), 2); % not recommended 

When used with uint8 or uint16 data, each arithmetic function rounds and saturates
its result before passing it on to the next operation. This can significantly reduce the
precision of the calculation. A better way to perform this calculation is to use the
imlincomb function. imlincomb performs all the arithmetic operations in the linear
combination in double precision and only rounds and saturates the final result.

K = imlincomb(.5,I,.5,I2); % recommended 
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Reading and Writing Image Data

This chapter describes how to get information about the contents of a graphics file,
read image data from a file, and write image data to a file, using standard graphics and
medical file formats.

• “Getting Information About Graphics Files” on page 3-2
• “Reading Image Data” on page 3-3
• “Writing Image Data to Files” on page 3-5
• “Convert Between Graphics File Formats” on page 3-8
• “DICOM Files” on page 3-9
• “Mayo Analyze 7.5 Files” on page 3-18
• “Interfile Files” on page 3-19
• “High Dynamic Range Images” on page 3-20
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Getting Information About Graphics Files

To obtain information about a graphics file and its contents, use the imfinfo function.
You can use imfinfo with any of the formats supported by MATLAB. Use the
imformats function to determine which formats are supported.

Note You can also get information about an image displayed in the Image Tool — see
“Get Image Information in Image Viewer App” on page 4-42.

The information returned by imfinfo depends on the file format, but it always includes
at least the following:

• Name of the file
• File format
• Version number of the file format
• File modification date
• File size in bytes
• Image width in pixels
• Image height in pixels
• Number of bits per pixel
• Image type: truecolor (RGB), grayscale (intensity), or indexed
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Reading Image Data

To import an image from any supported graphics image file format, in any of the
supported bit depths, use the imread function. This example reads a truecolor image
into the MATLAB workspace as the variable RGB.

RGB = imread('football.jpg');

If the image file format uses 8-bit pixels, imread stores the data in the workspace as a
uint8 array. For file formats that support 16-bit data, such as PNG and TIFF, imread
creates a uint16 array.

imread uses two variables to store an indexed image in the workspace: one for the image
and another for its associated colormap. imread always reads the colormap into a matrix
of class double, even though the image array itself may be of class uint8 or uint16.

[X,map] = imread('trees.tif');

In these examples, imread infers the file format to use from the contents of the file.
You can also specify the file format as an argument to imread. imread supports
many common graphics file formats, such as Microsoft® Windows® Bitmap (BMP),
Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG), Portable
Network Graphics (PNG), and Tagged Image File Format (TIFF) formats. For the latest
information concerning the bit depths and/or image formats supported, see imread and
imformats.

If the graphics file contains multiple images, imread imports only the first image
from the file. To import additional images, you must use imread with format-specific
arguments to specify the image you want to import. In this example, imread imports a
series of 27 images from a TIFF file and stores the images in a four-dimensional array.
You can use imfinfo to determine how many images are stored in the file.

mri = zeros([128 128 1 27],'uint8'); % preallocate 4-D array 

for frame=1:27

 [mri(:,:,:,frame),map] = imread('mri.tif',frame);

end

When a file contains multiple images that are related in some way, you can call image
processing algorithms directly. For more information, see “What is an Image Sequence?”.
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If you are working with a large file, you may want to try block processing to reduce
memory usage. For more information, see “Neighborhood or Block Processing: An
Overview”.
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Writing Image Data to Files

In this section...

“Specify Format-Specific Parameters” on page 3-5
“Read and Write 1-Bit Binary Images” on page 3-6
“Determine Storage Class of Output Files” on page 3-6

To export image data from the MATLAB workspace to a graphics file in one of the
supported graphics file formats, use the imwrite function. When using imwrite, you
specify the MATLAB variable name and the name of the file. If you include an extension
in the filename, imwrite attempts to infer the desired file format from it. For example,
the file extension .jpg infers the Joint Photographic Experts Group (JPEG) format. You
can also specify the format explicitly as an argument to imwrite.

This example loads the indexed image X from a MAT-file, clown.mat, along with the
associated colormap map, and then exports the image as a bitmap (BMP) file.

load clown

whos

Your output appears as shown:

  Name           Size              Bytes  Class     Attributes

  X            200x320            512000  double              

  caption        2x1                   4  char                

  map           81x3                1944  double              

Export the image as a bitmap file:

imwrite(X,map,'clown.bmp')

Specify Format-Specific Parameters

When using imwrite with some graphics formats, you can specify additional format-
specific parameters. For example, with PNG files, you can specify the bit depth. This
example writes a grayscale image I to a 4-bit PNG file.

imwrite(I,'clown.png','BitDepth',4);

This example writes an image A to a JPEG file, using an additional parameter to specify
the compression quality parameter.
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imwrite(A, 'myfile.jpg', 'Quality', 100);

For more information about these additional format-specific syntaxes, see the imwrite
reference page.

Read and Write 1-Bit Binary Images

In certain file formats, such as TIFF, a binary image can be stored in a 1-bit format.
When you read in a binary image in 1-bit format, imread stores the data in the
workspace as a logical array. If the file format supports it, imwrite writes binary
images as 1-bit images by default. This example reads in a binary image and writes it as
a TIFF file.

BW = imread('text.png');

imwrite(BW,'test.tif'); 

To verify the bit depth of test.tif, call imfinfo and check the BitDepth field.

info = imfinfo('test.tif');

info.BitDepth

ans =

     1

Note When writing binary files, MATLAB sets the ColorType field to 'grayscale'.

Determine Storage Class of Output Files

imwrite uses the following rules to determine the storage class used in the output
image.

Storage Class of
Image

Storage Class of Output Image File

logical If the output image file format supports 1-bit images, imwrite
creates a 1-bit image file.

If the output image file format specified does not support 1-bit
images, imwrite exports the image data as a uint8 grayscale
image.
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Storage Class of
Image

Storage Class of Output Image File

uint8 If the output image file format supports unsigned 8-bit images,
imwrite creates an unsigned 8-bit image file.

uint16 If the output image file format supports unsigned 16-bit images
(PNG or TIFF), imwrite creates an unsigned 16-bit image file.

If the output image file format does not support 16-bit images,
imwrite scales the image data to class uint8 and creates an 8-
bit image file.

int16 Partially supported; depends on file format.
single Partially supported; depends on file format.
double MATLAB scales the image data to uint8 and creates an 8-bit

image file, because most image file formats use 8 bits.
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Convert Between Graphics File Formats

To change the graphics format of an image, use imread to import the image into the
MATLAB workspace and then use the imwrite function to export the image, specifying
the appropriate file format.

To illustrate, this example uses the imread function to read an image in TIFF format
into the workspace and write the image data as JPEG format.

moon_tiff = imread('moon.tif');

imwrite(moon_tiff,'moon.jpg');

For the specifics of which bit depths are supported for the different graphics formats, and
for how to specify the format type when writing an image to file, see the reference pages
for imread and imwrite.
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DICOM Files

In this section...

“Overview of DICOM Support” on page 3-9
“Read Metadata from a DICOM File” on page 3-10
“Read Image Data from DICOM Files” on page 3-11
“Write Data to DICOM File” on page 3-12

Overview of DICOM Support

The Digital Imaging and Communications in Medicine (DICOM) Standard is a joint
project of the American College of Radiology (ACR) and the National Electrical
Manufacturers Association (NEMA). The standard facilitates interoperability of medical
imaging equipment by specifying a set of media storage services, a file format, and a
medical directory structure to facilitate access to the images and related information
stored on interchange media. For detailed information about the standard, see the official
DICOM web site.

MATLAB provides the following support for working with files in the DICOM format:

• Reading any file that complies with the DICOM standard
• Writing three different types of DICOM files, or DICOM information objects (IOD),

with validation:

• Secondary capture (default)
• Magnetic resonance
• Computed tomography

• Writing many more types of DICOM files without validation, by setting the
createmode flag to 'copy' when writing data to a file.

Note: MATLAB supports working with DICOM files. There is no support for working
with DICOM network capabilities.

http://medical.nema.org/
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Read Metadata from a DICOM File

DICOM files contain metadata that provide information about the image data, such as
the size, dimensions, bit depth, modality used to create the data, and equipment settings
used to capture the image. To read metadata from a DICOM file, use the dicominfo
function. dicominfo returns the information in a MATLAB structure where every
field contains a specific piece of DICOM metadata. You can use the metadata structure
returned by dicominfo to specify the DICOM file you want to read using dicomread —
see “Read Image Data from DICOM Files” on page 3-11.

The following example reads the metadata from a sample DICOM file that is included
with the toolbox.

info = dicominfo('CT-MONO2-16-ankle.dcm')

info = 

                          Filename: [1x89 char]

                       FileModDate: '18-Dec-2000 11:06:43'

                          FileSize: 525436

                            Format: 'DICOM'

                     FormatVersion: 3

                             Width: 512

                            Height: 512

                          BitDepth: 16

                         ColorType: 'grayscale'

    FileMetaInformationGroupLength: 192

        FileMetaInformationVersion: [2x1 uint8]

           MediaStorageSOPClassUID: '1.2.840.10008.5.1.4.1.1.7'

        MediaStorageSOPInstanceUID: [1x50 char]

                 TransferSyntaxUID: '1.2.840.10008.1.2'

            ImplementationClassUID: '1.2.840.113619.6.5'

                                .

                                .

                                .

Private DICOM Metadata

The DICOM specification defines many of these metadata fields, but files can contain
additional fields, called private metadata. This private metadata is typically defined by
equipment vendors to provide additional information about the data they provide.

When dicominfo encounters a private metadata field in a DICOM file, it returns the
metadata creating a generic name for the field based on the group and element tags of
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the metadata. For example, if the file contained private metadata at group 0009 and
element 0006, dicominfo creates the name:Private_0009_0006. dicominfo attempts
to interpret the private metadata, if it can. For example, if the metadata is a text string,
dicominfo processes the data. If it can't interpret the data, dicominfo returns a
sequence of bytes.

If you need to process a DICOM file created by a manufacturer that uses private
metadata, and you prefer to view the correct name of the field as well as the data,
you can create your own copy of the DICOM data dictionary and update it to include
definitions of the private metadata. You will need information about the private
metadata that vendors typically provide in DICOM compliance statements. For more
information about updating DICOM dictionary, see “Create Your Own Copy of DICOM
Dictionary” on page 3-11.

Create Your Own Copy of DICOM Dictionary

MathWorks uses a DICOM dictionary that contains definitions of thousands of standard
DICOM metadata fields. If your DICOM file contains metadata that is not defined this
dictionary, you can update the dictionary, creating your own copy that it includes these
private metadata fields.

To create your own dictionary, perform this procedure:

1 Make a copy of the text version of the DICOM dictionary that is included with
MATLAB. This file, called dicom-dict.txt is located in matlabroot/toolbox/
images/medformats or matlabroot/toolbox/images/iptformats depending
on which version of the Image Processing Toolbox software you are working with. Do
not attempt to edit the MAT-file version of the dictionary, dicom-dict.mat.

2 Edit your copy of the DICOM dictionary, adding entries for the metadata. Insert the
new metadata field using the group and element tag, type, and other information.
Follow the format of the other entries in the file. The creator of the metadata (e.g.,
an equipment vendor) must provide you with the information.

3 Save your copy of the dictionary.
4 Set MATLAB to use your copy of the DICOM dictionary, dicomdict function.

Read Image Data from DICOM Files

To read image data from a DICOM file, use the dicomread function. The dicomread
function reads files that comply with the DICOM specification but can also read certain
common noncomplying files.
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When using dicomread, you can specify the filename as an argument, as in the following
example. The example reads the sample DICOM file that is included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

You can also use the metadata structure returned by dicominfo to specify the file you
want to read, as in the following example.

info = dicominfo('CT-MONO2-16-ankle.dcm');

I = dicomread(info);

View DICOM Images

To view the image data imported from a DICOM file, use one of the toolbox image
display functions imshow or imtool. Note, however, that because the image data in
this DICOM file is signed 16-bit data, you must use the autoscaling syntax with either
display function to make the image viewable.

imshow(I,'DisplayRange',[])

Write Data to DICOM File

To write image data or metadata to a file in DICOM format, use the dicomwrite
function. This example writes the image I to the DICOM file ankle.dcm.

dicomwrite(I,'ankle.dcm')
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Include Metadata with Image Data

When writing image data to a DICOM file, dicomwrite automatically includes the
minimum set of metadata fields required by the type of DICOM information object (IOD)
you are creating. dicomwrite supports the following DICOM IODs with full validation.

• Secondary capture (default)
• Magnetic resonance
• Computed tomography

dicomwrite can write many other types of DICOM data (e.g., X-ray, radiotherapy,
nuclear medicine) to a file; however, dicomwrite does not perform any validation of this
data. See dicomwrite for more information.

You can also specify the metadata you want to write to the file by passing to
dicomwrite an existing DICOM metadata structure that you retrieved using
dicominfo. In the following example, the dicomwrite function writes the relevant
information in the metadata structure info to the new DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

I = dicomread(info);

dicomwrite(I,'ankle.dcm',info)

Note that the metadata written to the file is not identical to the metadata in the info
structure. When writing metadata to a file, there are certain fields that dicomwrite
must update. To illustrate, look at the instance ID in the original metadata and compare
it with the ID in the new file.

info.SOPInstanceUID

ans =

1.2.840.113619.2.1.2411.1031152382.365.1.736169244

Now, read the metadata from the newly created DICOM file, using dicominfo, and
check the SOPInstanceUID field.

info2 = dicominfo('ankle.dcm');

info2.SOPInstanceUID

ans =
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1.2.841.113411.2.1.2411.10311244477.365.1.63874544

Note that the instance ID in the newly created file differs from the ID in the original file.

Explicit Versus Implicit VR Attributes

DICOM attributes provide the length and then the data. When writing data to a file,
you can include a two-letter value representation (VR) with the attribute or you can let
DICOM infer the value representation from the data dictionary. When you specify the
VR option with the value 'explicit', the dicomwrite function includes the VR in the
attribute. The following figure shows the attributes with and without the VR.

Remove Confidential Information from a DICOM File

When using a DICOM file as part of a training set, blinded study, or a presentation, you
might want to remove confidential patient information, a process called anonymizing the
file. To do this, use the dicomanon function.

The dicomanon function creates a new series with new study values, changes some of
the metadata, and then writes the file. For example, you could replace steps 4, 5, and
6 in the example in “Create a New DICOM Series” on page 3-14 with a call to the
dicomanon function.

Create a New DICOM Series

When writing a modified image to a DICOM file, you might want to make the modified
image the start of a new series. In the DICOM standard, images can be organized into
series. When you write an image with metadata to a DICOM file, dicomwrite puts
the image in the same series by default. To create a new series, you must assign a new
DICOM unique identifier to the SeriesInstanceUID metadata field. The following
example illustrates this process.

1 Read an image from a DICOM file into the MATLAB workspace.

I = dicomread('CT-MONO2-16-ankle.dcm');

To view the image, use either of the toolbox display functions imshow or imtool.
Because the DICOM image data is signed 16-bit data, you must use the autoscaling
syntax.

imtool(I,'DisplayRange',[])
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2 Read the metadata from the same DICOM file.

info = dicominfo('CT-MONO2-16-ankle.dcm');

To identify the series an image belongs to, view the value of the
SeriesInstanceUID field.

info.SeriesInstanceUID

ans =

1.2.840.113619.2.1.2411.1031152382.365.736169244

3 You typically only start a new DICOM series when you modify the image in some
way. This example removes all the text from the image.

The example finds the maximum and minimum values of all pixels in the image. The
pixels that form the white text characters are set to the maximum pixel value.

max(I(:))

ans =

    4080

min(I(:))

ans =
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    32

To remove these text characters, the example sets all pixels with the maximum value
to the minimum value.

Imodified = I;

Imodified(Imodified == 4080) = 32;

View the processed image.

imshow(Imodified,[])

4 Generate a new DICOM unique identifier (UID) using the dicomuid function. You
need a new UID to write the modified image as a new series.

uid = dicomuid

uid =

1.3.6.1.4.1.9590.100.1.1.56461980611264497732341403390561061497

dicomuid is guaranteed to generate a unique UID.
5 Set the value of the SeriesInstanceUID field in the metadata associated with the

original DICOM file to the generated value.

info.SeriesInstanceUID = uid;
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6 Write the modified image to a new DICOM file, specifying the modified metadata
structure, info, as an argument. Because you set the SeriesInstanceUID value,
the image you write is part of a new series.

dicomwrite(Imodified,'ankle_newseries.dcm',info);

To verify this operation, view the image and the SeriesInstanceUID metadata
field in the new file.

For information about the syntax variations that specify nondefault spatial coordinates,
see the reference page for imshow.
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Mayo Analyze 7.5 Files

Analyze 7.5 is a file format, developed by the Mayo Clinic, for storing MRI data. An
Analyze 7.5 data set consists of two files:

• Header file (filename.hdr) — Provides information about dimensions,
identification, and processing history. You use the analyze75info function to read
the header information.

• Image file (filename.img) — Image data, whose data type and ordering are
described by the header file. You use analyze75read to read the image data into the
MATLAB workspace.

Note The Analyze 7.5 format uses the same dual-file data set organization and the
same filename extensions as the Interfile format; however, the file formats are not
interchangeable. To learn how to read data from an Interfile data set, see “Interfile Files”
on page 3-19.

The following example calls the analyze75info function to read the metadata from
the Analyze 7.5 header file. The example then passes the info structure returned by
analyze75info to the analyze75read function to read the image data from the image
file.

info = analyze75info('brainMRI.hdr');

X = analyze75read(info);
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Interfile Files

Interfile is a file format that was developed for the exchange of nuclear medicine image
data.

An Interfile data set consists of two files:

• Header file (filename.hdr) — Provides information about dimensions, identification
and processing history. You use the interfileinfo function to read the header
information.

• Image file (filename.img) — Image data, whose data type and ordering are
described by the header file. You use interfileread to read the image data into the
MATLAB workspace.

Note The Interfile format uses the same dual-file data set organization and the same
filename extensions as the Analyze 7.5 format; however, the file formats are not
interchangeable. To learn how to read data from an Analyze 7.5 data set, see “Mayo
Analyze 7.5 Files” on page 3-18.

The following example calls the interfileinfo function to read the metadata from
an Interfile header file. The example then reads the image data from the corresponding
image file in the Interfile data set. The file used in the example can be downloaded
from the Interfile Archive maintained by the Department of Medical Physics and
Bioengineering, University College, London, UK.

info = interfileinfo('dyna');

X = interfileread('dyna');

http://www.medphys.ucl.ac.uk/interfile/
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High Dynamic Range Images

In this section...

“Dynamic Range” on page 3-20
“Read High Dynamic Range Image” on page 3-20
“Create High Dynamic Range Image” on page 3-21
“Display High Dynamic Range Image” on page 3-21
“Write High Dynamic Range Image to File” on page 3-23

Dynamic Range

Dynamic range refers to the range of brightness levels, from dark to light. The dynamic
range of real-world scenes can be quite high. High Dynamic Range (HDR) images
attempt to capture the whole tonal range of real-world scenes (called scene-referred),
using 32-bit floating-point values to store each color channel. HDR images contain a
high level of detail, close to the range of human vision. The toolbox includes functions for
reading, creating, and writing HDR images, and a tone-map operator for displaying HDR
images on a computer monitor.

Read High Dynamic Range Image

To read a high dynamic range image into the MATLAB workspace, use the hdrread
function.

hdr_image = hdrread('office.hdr');

The output image hdr_image is an m-by-n-by-3 image of type single.

whos

  Name        Size            Bytes    Class     Attributes

  hdr_image   665x1000x3      7980000  single

Note, however, that before you can display a high dynamic range image, you must
convert it to a dynamic range appropriate to a computer display, a process called tone
mapping. Tone mapping algorithms scale the dynamic range down while attempting to
preserve the appearance of the original image. For more information, see “Display High
Dynamic Range Image” on page 3-21.
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Create High Dynamic Range Image

To create a high dynamic range image from a group of low dynamic range images,
use the makehdr function. Note that the low dynamic range images must be spatially
registered and the image files must contain EXIF metadata. Specify the low-dynamic
range images in a cell array.

hdr_image = makehdr(files);

Display High Dynamic Range Image

This example shows how to display a high dynamic range (HDR) image. To view an HDR
image, you must first convert the data to a dynamic range that can be displayed correctly
on a computer.

Read a high dynamic range (HDR) image, using hdrread . If you try to display the HDR
image, notice that it does not display correctly.

hdr_image = hdrread('office.hdr');

imshow(hdr_image)
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Convert the HDR image to a dynamic range that can be viewed on a computer, using the
tonemap function. This function converts the HDR image into an RGB image of class
uint8 .

rgb = tonemap(hdr_image);

whos

  Name             Size                  Bytes  Class     Attributes

  hdr_image      665x1000x3            7980000  single              

  rgb            665x1000x3            1995000  uint8               

Display the RGB image.

imshow(rgb)
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Write High Dynamic Range Image to File

To write a high dynamic range image from the MATLAB workspace into a file, use the
hdrwrite function.

hdrwrite(hdr,'filename');
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Displaying and Exploring Images

This section describes the image display and exploration tools provided by the Image
Processing Toolbox software.

• “Image Display and Exploration Overview” on page 4-2
• “Displaying Images Using the imshow Function” on page 4-4
• “Using the Image Viewer App to Explore Images” on page 4-13
• “Explore Very Large Images” on page 4-22
• “Explore Images with the Image Viewer App” on page 4-23
• “Get Pixel Information in Image Viewer App” on page 4-30
• “Measure Distance Between Pixels in Image Viewer” on page 4-38
• “Get Image Information in Image Viewer App” on page 4-42
• “Adjust Image Contrast In Image Viewer App” on page 4-44
• “Crop Image Using Image Viewer App” on page 4-54
• “View Image Sequences in Video Viewer App” on page 4-59
• “View Image Sequence as Montage” on page 4-68
• “Convert Multiframe Image to Movie” on page 4-70
• “Display Different Image Types” on page 4-71
• “Add Colorbar to Displayed Image” on page 4-77
• “Print Images” on page 4-79
• “Image Processing Toolbox Preferences” on page 4-80
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Image Display and Exploration Overview

The Image Processing Toolbox software includes two display functions, imshow and
imtool. Both functions work within the Handle Graphics® architecture: they create an
image object and display it in an axes object contained in a figure object.

imshow is the toolbox's fundamental image display function. Use imshow when you want
to display any of the different image types supported by the toolbox, such as grayscale
(intensity), truecolor (RGB), binary, and indexed. For more information, see “Displaying
Images Using the imshow Function” on page 4-4. The imshow function is also a key
building block for image applications you can create using the toolbox modular tools. For
more information, see .“Build Interactive Tools”

The other toolbox display function, imtool, launches the Image Viewer app, which
presents an integrated environment for displaying images and performing some common
image-processing tasks. The Image Viewer provides all the image display capabilities
of imshow but also provides access to several other tools for navigating and exploring
images, such as scroll bars, the Pixel Region tool, the Image Information tool, and the
Adjust Contrast tool. For more information, see “Using the Image Viewer App to Explore
Images” on page 4-13.

In general, using the toolbox functions to display images is preferable to using MATLAB
image display functions image and imagesc because the toolbox functions set
certainHandle Graphics properties automatically to optimize the image display. The
following table lists these properties and their settings for each image type. In the table,
X represents an indexed image, I represents a grayscale image, BW represents a binary
image, and RGB represents a truecolor image.

Note Both imshow and imtool can perform automatic scaling of image data. When
called with the syntax imshow(I,'DisplayRange',[]), and similarly for imtool, the
functions set the axes CLim property to [min(I(:)) max(I(:))]. CDataMapping is
always scaled for grayscale images, so that the value min(I(:)) is displayed using the
first colormap color, and the value max(I(:)) is displayed using the last colormap color.

Handle Graphics
Property

Indexed Images Grayscale Images Binary Images Truecolor Images

CData (Image) Set to the data in
X

Set to the data in
I

Set to data in BW Set to data in RGB
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Handle Graphics
Property

Indexed Images Grayscale Images Binary Images Truecolor Images

CDataMapping

(Image)
Set to 'direct' Set to 'scaled' Set to 'direct' Ignored when

CData is 3-D
CLim (Axes) Does not apply double: [0 1]

uint8:  [0 255]
uint16: [0
65535]

Set to [0 1] Ignored when
CData is 3-D

Colormap

(Figure)
Set to data in map Set to grayscale

colormap
Set to a grayscale
colormap whose
values range from
black to white

Ignored when
CData is 3-D
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Displaying Images Using the imshow Function

In this section...

“Overview” on page 4-4
“Specifying the Initial Image Magnification” on page 4-6
“Controlling the Appearance of the Figure” on page 4-7
“Displaying Each Image in a Separate Figure” on page 4-9
“Displaying Multiple Images in the Same Figure” on page 4-9

Overview

To display image data, use the imshow function. The following example reads an image
into the MATLAB workspace and then displays the image in a MATLAB figure window.

moon = imread('moon.tif');

imshow(moon);

The imshow function displays the image in a MATLAB figure window, as shown in the
following figure.
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You can also pass imshow the name of a file containing an image.

imshow('moon.tif');

This syntax can be useful for scanning through images. Note, however, that when you
use this syntax, imread does not store the image data in the MATLAB workspace. If you
want to bring the image into the workspace, you must use the getimage function, which
retrieves the image data from the current Handle Graphics image object. This example
assigns the image data from moon.tif to the variable moon, if the figure window in
which it is displayed is currently active.

moon = getimage;

For more information about using imshow to display the various image types supported
by the toolbox, see “Display Different Image Types” on page 4-71.

Specifying the Initial Image Magnification

By default, imshow attempts to display an image in its entirety at 100% magnification
(one screen pixel for each image pixel). However, if an image is too large to fit in a figure
window on the screen at 100% magnification, imshow scales the image to fit onto the
screen and issues a warning message.

To override the default initial magnification behavior for a particular call to imshow,
specify the InitialMagnification parameter. For example, to view an image at 150%
magnification, use this code.

pout = imread('pout.tif');

imshow(pout, 'InitialMagnification', 150)

imshow attempts to honor the magnification you specify. However, if the image does
not fit on the screen at the specified magnification, imshow scales the image to fit and
issues a warning message. You can also specify the text string 'fit' as the initial
magnification value. In this case, imshow scales the image to fit the current size of the
figure window.

To change the default initial magnification behavior of imshow, set the
ImshowInitialMagnification toolbox preference. To set the preference, open the
Image Processing Toolbox Preferences dialog by calling iptprefs or by selecting
Preferences from the MATLAB Desktop File menu.
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When imshow scales an image, it uses interpolation to determine the values for screen
pixels that do not directly correspond to elements in the image matrix. For more
information, see “Specify the Interpolation Method” on page 6-3.

Controlling the Appearance of the Figure

By default, when imshow displays an image in a figure, it surrounds the image with a
gray border. You can change this default and suppress the border using the 'border'
parameter, as shown in the following example.

imshow('moon.tif','Border','tight')

The following figure shows the same image displayed with and without a border.
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The 'border' parameters affect only the image being displayed in the call to imshow.
If you want all the images that you display using imshow to appear without the gray
border, set the Image Processing Toolbox 'ImshowBorder' preference to 'tight'. You
can also use preferences to include visible axes in the figure. For more information about
preferences, see iptprefs.
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Displaying Each Image in a Separate Figure

The simplest way to display multiple images is to display them in separate figure
windows. MATLAB does not place any restrictions on the number of images you can
display simultaneously.

imshow always displays an image in the current figure. If you display two images in
succession, the second image replaces the first image. To view multiple figures with
imshow, use the figure command to explicitly create a new empty figure before calling
imshow for the next image. For example, to view the first three frames in an array of
grayscale images I,

imshow(I(:,:,:,1))

figure, imshow(I(:,:,:,2))

figure, imshow(I(:,:,:,3))

Displaying Multiple Images in the Same Figure

You can use the imshow function with the MATLAB subplot function or the MATLAB
subimage function to display multiple images in a single figure window. For additional
options, see “What is an Image Sequence?”.

Note The Image Viewer app (imtool) does not support this capability.

Dividing a Figure Window into Multiple Display Regions

subplot divides a figure into multiple display regions. The syntax of subplot is

subplot(m,n,p)

This syntax divides the figure into an m-by-n matrix of display regions and makes the pth
display region active.

Note When you use subplot to display multiple color images in one figure window, the
images must share the colormap of the last image displayed. In some cases, as illustrated
by the following example, the display results can be unacceptable. As an alternative, you
can use the subimage function, described in “Using the subimage Function to Display
Multiple Images” on page 4-11, or you can map all images to the same colormap as
you load them.
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For example, you can use this syntax to display two images side by side.

[X1,map1]=imread('forest.tif');

[X2,map2]=imread('trees.tif');

subplot(1,2,1), imshow(X1,map1)

subplot(1,2,2), imshow(X2,map2)

In the figure, note how the first image displayed, X1, appears dark after the second
image is displayed.
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Using the subimage Function to Display Multiple Images

subimage converts images to truecolor before displaying them and therefore circumvents
the colormap sharing problem. This example uses subimage to display the forest and the
trees images with better results.

[X1,map1]=imread('forest.tif');

[X2,map2]=imread('trees.tif');
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subplot(1,2,1), subimage(X1,map1)

subplot(1,2,2), subimage(X2,map2)
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Using the Image Viewer App to Explore Images

In this section...

“Image Viewer App Overview” on page 4-13
“Opening the Image Viewer App” on page 4-15
“Specifying the Initial Image Magnification” on page 4-15
“Specifying the Colormap” on page 4-16
“Importing Image Data from the Workspace” on page 4-17
“Exporting Image Data to the Workspace” on page 4-18
“Saving Image Data Displayed in Image Viewer” on page 4-19
“Closing the Image Viewer App” on page 4-20
“Printing Images Displayed in Image Viewer App” on page 4-21

Image Viewer App Overview

The Image Viewer app is an image display and exploration tool that presents an
integrated environment for displaying images and performing common image-processing
tasks. The Image Viewer provides access to several other tools:

• Pixel Information tool — for getting information about the pixel under the pointer
• Pixel Region tool — for getting information about a group of pixels
• Distance tool — for measuring the distance between two pixels
• Image Information tool — for getting information about image and image file

metadata
• Adjust Contrast tool and associated Window/Level tool — for adjusting the contrast of

the image displayed in the Image Viewer and modifying the actual image data. You
can save the adjusted data to the workspace or a file.

• Crop Image tool — for defining a crop region on the image and cropping the image.
You can save the cropped image to the workspace or a file.

• Display Range tool — for determining the display range of the image data

In addition, the Image Viewer provides several navigation aids that can help explore
large images:
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• Overview tool — for determining what part of the image is currently visible in the
Image Viewer and changing this view.

• Pan tool — for moving the image to view other parts of the image
• Zoom tool — for getting a closer view of any part of the image.
• Scroll bars — for navigating over the image.

The following figure shows the image displayed in the Image Viewer app with many of
the related tools open and active.
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Opening the Image Viewer App

To start the Image Viewer, click Image Viewer on the Apps tab, or use the imtool
function. You can also start another Image Viewer from within an existing Image Viewer
by using the New option from the File menu.

To bring image data into the Image Viewer, you can use either the Open or Import
from Workspace options from the File menu — see “Importing Image Data from the
Workspace” on page 4-17.

You can also specify the name of the MATLAB workspace variable that contains image
data when you call imtool, as follows:

moon = imread('moon.tif');

imtool(moon)

Alternatively, you can specify the name of the graphics file containing the image. This
syntax can be useful for scanning through graphics files.

imtool('moon.tif');

Note When you specify a file name, the image data is not stored in a MATLAB workspace
variable. To bring the image displayed in the Image Viewer into the workspace, you must
use the getimage function or the Export to Workspace option from the Image Viewer
File menu — see “Exporting Image Data to the Workspace” on page 4-18.

Specifying the Initial Image Magnification

The Image Viewer attempts to display an image in its entirety at 100% magnification
(one screen pixel for each image pixel) and always honors any magnification value you
specify. If the image is too big to fit in a figure on the screen, the Image Viewer shows
only a portion of the image, adding scroll bars to allow navigation to parts of the image
that are not currently visible. If the specified magnification would make the image too
large to fit on the screen, the Image Viewer scales the image to fit, without issuing a
warning. This is the default behavior, specified by the 'InitialMagnification'
parameter value 'adaptive'.

To override this default initial magnification behavior for a particular call to imtool,
specify the InitialMagnification parameter. For example, to view an image at 150%
magnification, use this code.
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pout = imread('pout.tif');

imtool(pout, 'InitialMagnification', 150)

You can also specify the text string 'fit' as the initial magnification value. In this case,
imtool scales the image to fit the default size of a figure window.

Another way to change the default initial magnification behavior of the Image Viewer is
to set the ImtoolInitialMagnification toolbox preference. The magnification value
you specify remains in effect until you change it. To set the preference, use iptsetpref
or open the Image Processing Preferences panel by calling iptprefs or by selecting File
> Preferences in the Image Viewer menu. To learn more about toolbox preferences, see
iptprefs.

When the Image Viewer scales an image, it uses interpolation to determine the values for
screen pixels that do not directly correspond to elements in the image matrix. For more
information, see “Specify the Interpolation Method” on page 6-3.

Specifying the Colormap

A colormap is a matrix that can have any number of rows, but must have three columns.
Each row in the colormap is interpreted as a color, with the first element specifying the
intensity of red, the second green, and the third blue.

To specify the color map used to display an indexed image or a grayscale image in the
Image Viewer, select the Choose Colormap option on the Tools menu. This activates
the Choose Colormap tool. Using this tool you can select one of the MATLAB colormaps
or select a colormap variable from the MATLAB workspace.

When you select a colormap, the Image Viewer executes the colormap function you
specify and updates the image displayed. You can edit the colormap command in the
Evaluate Colormap text box; for example, you can change the number of entries in the
colormap (default is 256). You can enter your own colormap function in this field. Press
Enter to execute the command.

When you choose a colormap, the image updates to use the new map. If you click OK,
the Image Viewer applies the colormap and closes the Choose Colormap tool. If you click
Cancel, the image reverts to the previous colormap.
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Importing Image Data from the Workspace

To import image data from the MATLAB workspace into the Image Viewer, use the
Import from Workspace option on the Image Viewer File menu. In the dialog box,
shown below, you select the workspace variable that you want to import into the
workspace.

The following figure shows the Import from Workspace dialog box. You can use the Filter
menu to limit the images included in the list to certain image types, i.e., binary, indexed,
intensity (grayscale), or truecolor.
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Exporting Image Data to the Workspace

To export the image displayed in the Image Viewer to the MATLAB workspace, you can
use the Export to Workspace option on the Image Viewer File menu. (Note that when
exporting data, changes to the display range will not be preserved.) In the dialog box,
shown below, you specify the name you want to assign to the variable in the workspace.
By default, the Image Viewer prefills the variable name field with BW, for binary images,
RGB, for truecolor images, and I for grayscale or indexed images.

If the Image Viewer contains an indexed image, this dialog box also contains a field
where you can specify the name of the associated colormap.
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Using the getimage Function to Export Image Data

You can also use the getimage function to bring image data from the Image Viewer into
the MATLAB workspace.

The getimage function retrieves the image data (CData) from the current Handle
Graphics image object. Because, by default, the Image Viewer does not make handles
to objects visible, you must use the toolbox function imgca to get a handle to the image
axes displayed in the Image Viewer. The following example assigns the image data from
moon.tif to the variable moon if the figure window in which it is displayed is currently
active.

moon = getimage(imgca);

Saving Image Data Displayed in Image Viewer

To save the image data displayed in the Image Viewer, select the Save as option from
the Image Viewer File menu. The Image Viewer opens the Save Image dialog box, shown
in the following figure. Use this dialog box to navigate your file system to determine
where to save the image file and specify the name of the file. Choose the graphics file
format you want to use from among many common image file formats listed in the Files
of Type menu. If you do not specify a file name extension, the Image Viewer adds an
extension to the file associated with the file format selected, such as .jpg for the JPEG
format.
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Note: Changes you make to the display range will not be saved. If you would like to
preserve your changes, use imcontrast.

Closing the Image Viewer App

To close the Image Viewer, use the Close button in the window title bar or select the
Close option from the Image Viewer File menu. If you used the imtool function to start
the Image Viewer you can get a handle to the app. You can use this handle to close the
app. When you close the Image Viewer, any related tools that are currently open also
close.
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Because the Image Viewer does not make the handles to its figure objects visible, the
Image Viewer does not close when you call the MATLAB close all command. If you
want to close multiple Image Viewers, use the syntax

imtool close all

or select Close all from the Image Viewer File menu.

Printing Images Displayed in Image Viewer App

To print the image displayed in the Image Viewer, select the Print to Figure option
from the File menu. The Image Viewer opens another figure window and displays the
image. Use the Print option on the File menu of this figure window to print the image.
See “Print Images” on page 4-79 for more information.
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Explore Very Large Images

In this section...

“Overview” on page 4-22
“Creating an R-Set File” on page 4-22
“Opening an R-Set File” on page 4-22

Overview

If you are viewing a very large image, it might not load in Image Viewer, or it could load,
but zooming and panning are slow. In either case, creating a reduced resolution data set
(R-Set) can improve performance. Use the Image Viewer to navigate an R-Set image the
same way you navigate a standard image.

Creating an R-Set File

To create an R-Set file, use the function rsetwrite. For example, to create an R-Set
from a TIFF file called 'LargeImage.tif', enter the following:

rsetfile = rsetwrite ('LargeImage.tif')

rsetwrite saves an R-Set file named 'LargeImage.rset' in the current directory. Or,
if you want to save the R-Set file under a different name, enter the following:

rsetfile = rsetwrite('LargeImage.tif', 'New_Name')

You can create an R-Set file directly from a TIFF or NITF file, or you can create one from
another type of image file by first creating an Image Adapter object. See “Working with
Data in Unsupported Formats” for more information.

The time required to create an R-Set varies, depending on the size of the initial file and
the capability of your machine. A progress bar shows an estimate of time required. If you
cancel the operation, processing stops, no file is written, and the rsetfile variable will
be empty.

Opening an R-Set File

Open an R-Set file from the command line:

imtool('LargeImage.rset')



 Explore Images with the Image Viewer App

4-23

Explore Images with the Image Viewer App

In this section...

“Explore Images Using the Overview Tool” on page 4-23
“Pan Images Displayed in Image Viewer App” on page 4-26
“Zoom Images in the Image Viewer App” on page 4-26
“Specify Image Magnification in Image Viewer” on page 4-27

Explore Images Using the Overview Tool

If an image is large or viewed at a large magnification, the Image Viewer displays only
a portion of the entire image and automatically includes scroll bars to allow navigation
around the image. To determine which part of the image is currently visible in the Image
Viewer, use the Overview tool. The Overview tool displays the entire image, scaled to fit.
Superimposed over this view of the image is a rectangle, called the detail rectangle. The
detail rectangle shows which part of the image is currently visible in the Image Viewer.
You can change the portion of the image visible in the Image Viewer by moving the detail
rectangle over the image in the Overview tool.
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The following sections provide more information about using the Overview tool.

• “Starting the Overview Tool” on page 4-25
• “Moving the Detail Rectangle to Change the Image View” on page 4-25
• “Specifying the Color of the Detail Rectangle” on page 4-25
• “Getting the Position and Size of the Detail Rectangle” on page 4-25
• “Printing the View of the Image in the Overview Tool” on page 4-26
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Starting the Overview Tool

You can start the Overview tool by clicking the Overview button  in the Image
Viewer toolbar or by selecting the Overview option from the Image ViewerTools menu.
You can also change the preferences, so the Overview tool will open automatically when
you open the Image Viewer. For more information on setting preferences, see iptprefs.

Moving the Detail Rectangle to Change the Image View

1 Start the Overview tool by clicking the Overview button  in the Image Viewer
toolbar or by selecting Overview from the Tools menu. The Overview tool opens in
a separate window containing a view of the entire image, scaled to fit.

If the Overview tool is already active, clicking the Overview button brings the tool
to the front of the windows open on your screen.

2 Using the mouse, move the pointer into the detail rectangle. The pointer changes to

a fleur, .
3 Press and hold the mouse button to drag the detail rectangle anywhere on the image.

The Image Viewer updates the view of the image to make the specified region visible.

Specifying the Color of the Detail Rectangle

By default, the color of the detail rectangle in the Overview tool is blue. You can change
the color of the rectangle to achieve better contrast with the predominant color of the
underlying image. To do this, right-click anywhere inside the boundary of the detail
rectangle and select a color from the Set Color option on the context menu.

Getting the Position and Size of the Detail Rectangle

To get the current position and size of the detail rectangle, right-click anywhere inside it
and select Copy Position from the context menu. You can also access this option from
the Edit menu of the Overview tool.

This option copies the position information to the clipboard. The position information is a
vector of the form [xmin ymin width height]. You can paste this position vector into
the MATLAB workspace or another application.
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Printing the View of the Image in the Overview Tool

You can print the view of the image displayed in the Overview tool. Select the Print to
Figure option from the Overview tool File menu. See “Print Images” on page 4-79 for
more information.

Pan Images Displayed in Image Viewer App

To change the portion of the image displayed in the Image Viewer, use the Pan tool to
move the image displayed in the window. This is called panning the image.

1 Click the Pan tool button  in the toolbar or select Pan from the Tools menu.
When the Pan tool is active, a checkmark appears next to the Pan selection in the
menu.

2 Move the pointer over the image in the Image Viewer, using the mouse. The pointer
changes to an open-hand shape .

3 Press and hold the mouse button and drag the image in the Image Viewer. When you
drag the image, the pointer changes to the closed-hand shape .

4 To turn off panning, click the Pan tool button again or click the Pan option in the
Tools menu.

Note As you pan the image in the Image Viewer, the Overview tool updates the position
of the detail rectangle — see “Explore Images Using the Overview Tool” on page 4-23.

Zoom Images in the Image Viewer App

To enlarge an image to get a closer look or shrink an image to see the whole image in
context, use the Zoom buttons on the toolbar. (You can also zoom in or out on an image
by changing the magnification — see “Specify Image Magnification in Image Viewer” on
page 4-27 or by using the Ctrl+Plus or Ctrl+Minus keys. Note that these are the
Plus(+) and Minus(-) keys on the numeric keypad of your keyboard.)

1 Click the appropriate magnifying glass button in the Image Viewer toolbar or select
the Zoom In or Zoom Out option in the Tools menu. When the Zoom tool is active,
a checkmark appears next to the appropriate Zoom selection in the menu.
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2 Move the pointer over the image you want to zoom in or out on, using the mouse. The
pointer changes to the appropriate magnifying glass icon. With each click, the Image
Viewer changes the magnification of the image, centering the new view of the image
on the spot where you clicked.

When you zoom in or out on an image, the magnification value displayed in the
magnification edit box changes and the Overview window updates the position of
the detail rectangle.

3 To leave zoom mode, click the active zoom button again to deselect it or click the
Zoom option in the Tools menu.

Specify Image Magnification in Image Viewer

To enlarge an image to get a closer look or to shrink an image to see the whole image in
context, you can use the magnification edit box, shown in the following figure. (You can
also use the Zoom buttons to enlarge or shrink an image. See “Zoom Images in the Image
Viewer App” on page 4-26 for more information.)



4 Displaying and Exploring Images

4-28

To change the magnification of an image,

1 Move the pointer into the magnification edit box. The pointer changes to the text
entry cursor.

2 Type a new value in the magnification edit box and press Enter. The Image Viewer
changes the magnification of the image and displays the new view in the window.



 Explore Images with the Image Viewer App

4-29

You can also specify a magnification by clicking the menu associated with the
magnification edit box and selecting from a list of preset magnifications. If you choose
the Fit to Window option, the Image Viewer scales the image so that the entire image is
visible.
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Get Pixel Information in Image Viewer App

In this section...

“Determine Individual Pixel Values in Image Viewer” on page 4-30
“Determine Pixel Values in an Image Region” on page 4-31
“Determine Image Display Range in Image Viewer” on page 4-35

Determine Individual Pixel Values in Image Viewer

The Image Viewer displays information about the location and value of individual pixels
in an image in the bottom left corner of the tool. (You can also obtain this information by
opening a figure with imshow and then calling impixelinfo from the command line.)
The pixel value and location information represent the pixel under the current location of
the pointer. The Image Viewer updates this information as you move the pointer over the
image.

For example, view an image in the Image Viewer.

imtool('moon.tif')

The following figure shows the Image Viewer with pixel location and value displayed
in the Pixel Information tool. For more information, see “Saving the Pixel Value and
Location Information” on page 4-31.
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Saving the Pixel Value and Location Information

To save the pixel location and value information displayed, right-click a pixel in the
image and choose the Copy pixel info option. The Image Viewer copies the x- and y-
coordinates and the pixel value to the clipboard.

To paste this pixel information into the MATLAB workspace or another application,
right-click and select Paste from the context menu.

Determine Pixel Values in an Image Region
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To view the values of pixels in a specific region of an image displayed in the Image
Viewer, use the Pixel Region tool. The Pixel Region tool superimposes a rectangle, called
the pixel region rectangle, over the image displayed in the Image Viewer. This rectangle
defines the group of pixels that are displayed, in extreme close-up view, in the Pixel
Region tool window. The following figure shows the Image Viewer with the Pixel Region
tool. Note how the Pixel Region tool includes the value of each pixel in the display.

The following sections provide more information about using the Pixel Region tool.
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• “Selecting a Region” on page 4-33
• “Customizing the View” on page 4-33
• “Determining the Location of the Pixel Region Rectangle” on page 4-34
• “Printing the View of the Image in the Pixel Region Tool” on page 4-35

Selecting a Region

1 To start the Pixel Region tool, click the Pixel Region button  in the Image
Viewer toolbar or select the Pixel Region option from the Tools menu. (Another
option is to open a figure using imshow and then call impixelregion from the

command line.) The Image Viewer displays the pixel region rectangle  in the
center of the target image and opens the Pixel Region tool.

Note Scrolling the image can move the pixel region rectangle off the part of the
image that is currently displayed. To bring the pixel region rectangle back to the
center of the part of the image that is currently visible, click the Pixel Region button
again. For help finding the Pixel Region tool in large images, see “Determining the
Location of the Pixel Region Rectangle” on page 4-34.

2 Using the mouse, position the pointer over the pixel region rectangle. The pointer
changes to the fleur shape, .

3 Click the left mouse button and drag the pixel region rectangle to any part of the
image. As you move the pixel region rectangle over the image, the Pixel Region tool
updates the pixel values displayed. You can also move the pixel region rectangle by
moving the scroll bars in the Pixel Region tool window.

Customizing the View

To get a closer view of image pixels, use the zoom buttons on the Pixel Region tool
toolbar. As you zoom in, the size of the pixels displayed in the Pixel Region tool increase
and fewer pixels are visible. As you zoom out, the size of the pixels in the Pixel Region
tool decrease and more pixels are visible. To change the number of pixels displayed in the
tool, without changing the magnification, resize the Pixel Region tool using the mouse.

As you zoom in or out, note how the size of the pixel region rectangle changes according
to the magnification. You can resize the pixel region rectangle using the mouse. Resizing
the pixel region rectangle changes the magnification of pixels displayed in the Pixel
Region tool.



4 Displaying and Exploring Images

4-34

If the magnification allows, the Pixel Region tool overlays each pixel with its numeric
value. For RGB images, this information includes three numeric values, one for each
band of the image. For indexed images, this information includes the index value and the
associated RGB value. If you would rather not see the numeric values in the display, go
to the Pixel Region tool Edit menu and clear the Superimpose Pixel Values option.

Determining the Location of the Pixel Region Rectangle

To determine the current location of the pixel region in the target image, you can use the
pixel information given at the bottom of the tool. This information includes the x- and
y-coordinates of pixels in the target image coordinate system. When you move the pixel
region rectangle over the target image, the pixel information given at the bottom of the
tool is not updated until you move the cursor back over the Pixel Region tool.

You can also retrieve the current position of the pixel region rectangle by selecting the
Copy Position option from the Pixel Region tool Edit menu. This option copies the
position information to the clipboard. The position information is a vector of the form
[xmin ymin width height].
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To paste this position vector into the MATLAB workspace or another application, right-
click and select Paste from the context menu.

The following figure shows these components of the Pixel Region tool.

Printing the View of the Image in the Pixel Region Tool

You can print the view of the image displayed in the Pixel Region tool. Select the Print
to Figure option from the Pixel Region tool File menu. See “Print Images” on page
4-79 for more information.

Determine Image Display Range in Image Viewer

The Image Viewer provides information about the display range of pixels in a grayscale
image. The display range is the value of the axes CLim property, which controls the
mapping of image CData to the figure colormap. CLim is a two-element vector [cmin
cmax] specifying the CData value to map to the first color in the colormap (cmin) and
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the CData value to map to the last color in the colormap (cmax). Data values in between
are linearly scaled.

The Image Viewer displays this information in the Display Range tool at the bottom right
corner of the window. The Image Viewer does not show the display range for indexed,
truecolor, or binary images. (You can also obtain this information by opening a figure
window with imshow and then calling imdisplayrange from the command line.)

For example, view an image in the Image Viewer.

imtool('moon.tif')

The following figure shows the Image Viewer displaying the image with display range
information.
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Measure Distance Between Pixels in Image Viewer

In this section...

“Determine Distance Between Pixels Using Distance Tool” on page 4-38
“Export Endpoint and Distance Data” on page 4-40
“Customize the Appearance of the Distance Tool” on page 4-40

Determine Distance Between Pixels Using Distance Tool

1 Display an image in the Image Viewer.

imtool('moon.tif') 

2 Click the Distance tool button  in the Image Viewer toolbar or select Measure
Distance from the Tools menu. The Distance tool allows you to measure distance
with a click-and-drag approach. When you move the pointer over the image, the

pointer changes to cross hairs . Position the cross hairs at the beginning of the
region you wish to measure, hold down the mouse button, drag the cross hairs to the
end of the region, and release the button.

The Distance tool displays the Euclidean distance between the two endpoints of the
line in a label superimposed over the line. The tool specifies the distance in data
units determined by the XData and YData properties, which is pixels, by default.
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3 An alternative to using the Distance tool in Image Viewer is to open a figure window
using imshow and then call imdistline. The Distance tool appears as a horizontal
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line displayed over the image. You can reposition the line or grab either of its
endpoints to resize the tool.

Export Endpoint and Distance Data

To save the endpoint locations and distance information, right-click the Distance tool
and choose the Export to Workspace option from the context menu. The Distance tool
opens the Export to Workspace dialog box. You can use this dialog box to specify the
names of the variables used to store this information.

After you click OK, the Distance tool creates the variables in the workspace, as in the
following example.

whos

  Name          Size            Bytes  Class     Attributes

  distance      1x1                 8  double              

  point1        1x2                16  double              

  point2        1x2                16  double 

Customize the Appearance of the Distance Tool

Using the Distance tool context menu, you can customize many aspects of the Distance
tool appearance and behavior. Position the pointer over the line and right-click to access
these context menu options.

• Toggling the distance tool label on and off using the Show Distance Label option.
• Changing the color used to display the Distance tool line using the Set color option.
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• Constraining movement of the tool to either horizontal or vertical using the
Constrain drag option.

• Deleting the distance tool object using the Delete option.

Right-click the Distance tool to access this context menu.
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Get Image Information in Image Viewer App

To get information about the image displayed in the Image Viewer, use the Image
Information tool. The Image Information tool can provide two types of information about
an image:

• Basic information — Includes width, height, class, and image type. For grayscale and
indexed images, this information also includes the minimum and maximum intensity
values.

• Image metadata — Displays all the metadata from the graphics file that contains
the image. This is the same information returned by the imfinfo function or the
dicominfo function.

Note The Image Information tool can display image metadata only when you specify the
filename containing the image to Image Viewer, e.g., imtool('moon.tif').

For example, view an image in the Image Viewer.

imtool('moon.tif')

Start the Image Information tool by clicking the Image Information button  in the
Image Viewer toolbar or selecting the Image Information option from the Tools menu
in the Image Viewer. (Another option is to open a figure window using imshow and then
call imageinfo from the command line.)

The following figure shows the Image Viewer with the Image Information tool. If you
specify a file name when you call the imtool function, the Image Information tool
displays both basic image information and image metadata, as shown in the figure.
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Adjust Image Contrast In Image Viewer App

In this section...

“Understanding Contrast Adjustment” on page 4-44
“Open the Adjust Contrast Tool” on page 4-45
“Adjust Image Contrast Using the Histogram Window” on page 4-48
“Adjust Image Contrast Using Window/Level Tool” on page 4-49
“Make Contrast Adjustments Permanent” on page 4-52

Understanding Contrast Adjustment

An image lacks contrast when there are no sharp differences between black and white.
Brightness refers to the overall lightness or darkness of an image.

To change the contrast or brightness of an image, the Adjust Contrast tool performs
contrast stretching. In this process, pixel values below a specified value are displayed as
black, pixel values above a specified value are displayed as white, and pixel values in
between these two values are displayed as shades of gray. The result is a linear mapping
of a subset of pixel values to the entire range of grays, from black to white, producing an
image of higher contrast.

The following figure shows this mapping. Note that the lower limit and upper limit mark
the boundaries of the window, displayed graphically as the red-tinted window in the
Adjust Contrast tool — see “Open the Adjust Contrast Tool” on page 4-45
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Relationship of Pixel Values to Display Range

The Adjust Contrast tool accomplishes this contrast stretching by modifying the CLim
property of the axes object that contains the image. The CLim property controls the
mapping of image pixel values to display intensities.

By default, the Image Viewer sets the CLim property to the default display range
according to the data type. For example, the display range of an image of class uint8
is from 0 to 255. When you use the Adjust Contrast tool, you change the contrast in the
image by changing the display range which affects the mapping between image pixel
values and the black-to-white range. You create a window over the range that defines
which pixels in the image map to the black in the display range by shrinking the range
from the bottom up.

Open the Adjust Contrast Tool

This section describes how to use the Adjust Contrast tool in the Image Viewer.

1 View an image in the Image Viewer.

imtool('moon.tif')

You can also use the Adjust Contrast tool independent of the Image Viewer by
calling the imcontrast function.

2 Click Adjust Contrast  in the Image Viewer toolbar, or select the Adjust
Contrast option from the Image Viewer Tools menu. The Adjust Contrast tool
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opens in a separate window containing a histogram of the image displayed in the
Image Viewer. The histogram shows the data range of the image and the display
range of the image. The data range is the range of intensity values actually used
in the image. The display range is the black-to-white mapping used to display the
image, which is determined by the image class. The Adjust Contrast tool works by
manipulating the display range; the data range of the image remains constant.

For example, in the following figure, the histogram for the image shows that the data
range of the image is 74 to 224 and the display range is the default display range
for the uint8 class, 0 to 255. The pixel values for the image are clustered in the
middle of the display range. Adjusting the contrast spreads the pixel values across
the display range, revealing much more detail in the image.

To adjust the contrast of the image, you can manipulate the red-tinted rectangular
box, called a window, that the Adjust Contrast tool overlays on the histogram. By
changing the size and position of this window using the mouse, you can modify the
display range of the image and improve its contrast and brightness — see “Adjust
Image Contrast Using the Histogram Window” on page 4-48.
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Note You can also use the Window/Level tool to adjust contrast and brightness using
the mouse. (The name comes from medical applications.) Click Window/Level  in
the Image Viewer toolbar or select the Window/Level option from the Image Viewer
Tools menu. For more information about using the Window/Level tool, see “Adjust Image
Contrast Using Window/Level Tool” on page 4-49.

When you close the Adjust Contrast tool, the Window/Level tool remains active. To turn

off the Window/Level tool, click the Window/Level button  or one of the navigation
buttons in the Image Viewer toolbar.

Adjust Image Contrast Using the Histogram Window

To adjust image contrast using the Adjust Contrast tool, you manipulate the size of the
red-tinted window displayed over the histogram, using any of the following methods.

• Grabbing one of the red handles on the right and left edges of the window and
dragging it. You can also change the position of the window by grabbing the center
line and dragging the window to the right or left.

• Specifying the size and position of the window in the Minimum and Maximum
fields. You can also define these values by clicking the dropper button associated with
these fields. When you do this, the pointer becomes an eye dropper shape. Position the
eye dropper pointer over the pixel in the image that you want to be the minimum (or
maximum) value and click the mouse button.

• Specifying the size and position of the window in the Width and Center fields.
• Selecting the Match data range button in the Scale Display Range part of the tool.

When you choose this option, the size of the window changes from the default display
range to the data range of the image.

• Trimming outliers at the top and bottom of the image data range. If you select the
Eliminate outliers option, the Adjust Contrast tool removes the top 1% and the
bottom 1%, but you can specify other percentages. When you specify a percentage,
the Adjust Contrast tool applies half the percentage to the top and half to the bottom.
(You can perform this same operation using the stretchlim function.)

The following figure shows these methods of adjusting contrast. The Image Viewer
updates the display range values displayed in the lower right corner of the Image Viewer
as you change the size of the window.
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Adjust Image Contrast Using Window/Level Tool

To start the Window/Level tool, click Window/Level  in the Image Viewer toolbar.

Using the Window/Level tool, you can change the contrast and brightness of an image
by simply dragging the mouse over the image. Moving the mouse horizontally affects
contrast; moving the mouse vertically affects brightness. Note that any contrast
adjustments you make using the Window/Level tool are reflected immediately in the
Adjust Contrast tool. For example, if you increase the brightness, the window in the
Adjust Contrast moves over the histogram.

The following table summarizes how these mouse motions affect the size and position of
the window in the Adjust Contrast tool.

Mouse Motion  Effect

Horizontally to the left Shrinks the window from both sides.
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Mouse Motion  Effect

Horizontally to the right Expands the window from both sides.
Vertically up Moves the window to the right over the

histogram, increasing brightness.

Vertically down Moves the window to the left over the image
histogram, decreasing brightness.

To stop the Window/Level tool, click the Window/Level button in the Image Viewer
toolbar, or click any of the navigation buttons in the toolbar.

Adjust Contrast with the Window/Level Tool

1 Read an image from a sample DICOM file included with the toolbox.

I = dicomread('CT-MONO2-16-ankle.dcm');

2 View the image data using the Image Viewer. Because the image data is signed 16-
bit data, this example uses the autoscaling syntax.

imtool(I,'DisplayRange',[])

3 Click the Window/Level button  to start the tool, or select Window/Level from
the Tools menu in the Image Viewer.
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4 Move the pointer over the image. The pointer changes to the Window/Level cursor
.

5 Click and drag the left (or right) mouse button and move the pointer horizontally
to the left or right to adjust the contrast, or vertically up or down to change the
brightness.

Make Contrast Adjustments Permanent

By default, the Adjust Contrast tool adjusts the values of the pixels used to display the
image in the Image Viewer but does not change the actual image data. To modify pixel
values in the image to reflect the contrast adjustments you made, you must click the
Adjust Data button.

The following example illustrates this process.

1 Display an image in the Image Viewer. The example opens an image from a file.

imtool('moon.tif');

2 Start the Adjust Contrast tool by clicking the Adjust contrast button, , or by
selecting Adjust Contrast from the Tools menu in the Image Viewer.

3 Adjust the contrast of the image. Use one of the mechanisms provided by Adjust
Contrast tool, such as resizing the window over the histogram. See “Adjust Image
Contrast Using the Histogram Window” on page 4-48. You can also adjust
contrast using the Window/Level tool, moving the pointer over the image.

4 Adjust the image data to reflect the contrast adjustment you just made. Click the

Adjust Data button  in the Adjust Contrast Tool. When you click the
Adjust Data button, the histogram will update. You can then adjust the contrast
again, if necessary. If you have other interactive modular tool windows open, they
will update automatically to reflect the contrast adjustment.

Note: The Adjust Data button is unavailable until you make a change to the contrast
of the image.

Saving the Modified Image Data

By default, if you close the Image Viewer, it does not save the modified image data. To
save these changed values, use the Save As option from the Image Viewer File menu
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to store the modified data in a file or use the Export to Workspace option to save the
modified data in a workspace variable.
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Crop Image Using Image Viewer App

Cropping an image means creating a new image from a part of an original image. To crop
an image using the Image Viewer, use the Crop Image tool. To use the Crop Image tool,
follow this procedure.

By default, if you close the Image Viewer, it does not save the modified image data. To
save the cropped image, you can use the Save As option from the Image Viewer File
menu to store the modified data in a file or use the Export to Workspace option to save
the modified data in the workspace variable.

1 View an image in the Image Viewer.

I = imread('moon.tif');

imtool(I)

2
Start the Crop Image tool by clicking Crop Image  in the Image Viewer toolbar
or selecting Crop Image from the Image Viewer Tools menu. (Another option is to
open a figure window with imshow and call imcrop from the command line.) When

you move the pointer over the image, the pointer changes to cross hairs .
3 Define the rectangular crop region, by clicking and dragging the mouse over the

image. You can fine-tune the crop rectangle by moving and resizing the crop
rectangle using the mouse. Or, if you want to crop a different region, move to the
new location and click and drag again. To zoom in or out on the image while the Crop
Image tool is active, use Ctrl+Plus or Ctrl+Minus keys. Note that these are the
Plus(+) and Minus(-) keys on the numeric keypad of your keyboard. The following
figure shows a crop rectangle being defined using the Crop Image tool.
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4 When you are finished defining the crop region, perform the crop operation. Double-
click the left mouse button or right-click inside the region and select Crop Image
from the context menu. The Image Viewer displays the cropped image. If you have
other modular interactive tools open, they will update to show the newly cropped
image.
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5 To save the cropped image, use the Save as option or the Export to Workspace
option on the Image Viewer File menu.
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View Image Sequences in Video Viewer App

This section describes how to use the Video Viewer app to view image sequences and
provides information about configuring the Video Viewer app.

In this section...

“View MRI Sequence Using Video Viewer App” on page 4-59
“Configure Video Viewer App” on page 4-62
“Specifying the Frame Rate” on page 4-65
“Specify Color Map” on page 4-66
“Get Information about an Image Sequence” on page 4-66

View MRI Sequence Using Video Viewer App

1 Load the image sequence into the MATLAB workspace. For this example, load the
MRI data from the file mristack.mat, which is included in the imdata folder.

load mristack

This places a variable named mristack in your workspace. The variable is an array
of 21 grayscale frames containing MRI images of the brain. Each frame is a 256-
by-256 array of uint8 data.

mristack       256x256x21       1276256     uint8

2 Click the Video Viewer app in the apps gallery and select the Import from
workspace option on the File menu. You can also call implay, specifying the name
of the image sequence variable as an argument.

implay(mristack)

The Video Viewer opens, displaying the first frame of the image sequence. Note how
the Video Viewer displays information about the image sequence, such as the size of
each frame and the total number of frames, at the bottom of the window.
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3 Explore the image sequence using Video Viewer Playback controls.

To view the image sequence or video as an animation, click the Play button  in the
Playback toolbar, select Play from the Playback menu, or press P or the Space bar.
By default, the Video Viewer plays the image sequence forward, once in its entirety,
but you can view the frames in the image sequence in many ways, described in this
table. As you view an image sequence, note how the Video Viewer updates the Status
Bar at the bottom of the window.
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Viewing Option Playback Control Keyboard
Shortcut

Specify the
direction in which
to play the image
sequence.

Click the Playback mode button  in the
Playback toolbar or select Playback Modes
from the Playback menu. You can select forward,
backward, or autoreverse. As you click the
playback mode button, it cycles through these
options and the appearance changes to indicate
the current selection.

A

View the sequence
repeatedly.

Click the Repeat button  in the Playback
toolbar or select Playback Modes > Repeat from
the Playback menu. You toggle this option on or
off.

R

Jump to a specific
frame in the
sequence.

Click the Jump to button  in the Playback
toolbar or select Jump to from the Playback
menu. This option opens a dialog box in which you
can specify the number of the frame.

J

Stop the sequence. Click the Stop button  in the Playback toolbar
or select Stop from the Playback menu. This
button is only enabled when an image sequence is
playing.

S

Step through the
sequence, one frame
at a time, or jump
to the beginning or
end of the sequence
(rewind).

Click one of the navigation buttons 
in the Playback toolbar, in the desired direction,
or select an option, such as Fast Forward or
Rewind from the Playback menu.

Arrow
keysPage
Up/Page
Down

L (last
frame)
F (first
frame)

4 Change the view of the image sequence or examine a frame more closely.

The Video Viewer supports several tools listed in the Tools menu and on the Toolbar
that you can use to examine the frames in the image sequence more closely.
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Viewing Option Playback Control

Zoom in or out on the image,
and pan to change the view. Click one of the zoom buttons  in the toolbar

or select Zoom In or Zoom Out from the Tools

menu. Click the Pan button  in the toolbar
or select Pan from the Tools menu. If you click

Maintain fit to window button  in the toolbar or
select Maintain fit to window or from the Tools
menu, the zoom and pan buttons are disabled.

Examine an area of the
current frame in detail. Click the Pixel region button  in the Playback

toolbar or select Pixel Region from the Tools menu.
Export frame to Image
Viewer Click the Export to Image Tool button  in the

Playback toolbar or select Export to Image Tool
from the File menu. The Video Viewer app opens an
Image Viewer containing the current frame.

Configure Video Viewer App

The Video Viewer app Configuration dialog box enables you to change the appearance
and behavior of the player. To open the Configuration dialog box, select File >
Configuration > Edit. (To load a preexisting configuration set, select File >
Configuration > Load.)

The Configuration dialog box contains four tabs: Core, Sources, Visuals, and Tools. On
each tab, select a category and then click Properties to view configuration settings.
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The following table lists the options that are available for each category on every pane.

Pane Option Category Option Descriptions

Core General UI Display the full source path in the title bar check
box — Select to display the full path to the video
data source in the title bar. By default, Movie Player
displays a shortened name in the title bar.

Open message log menu — Specify when the
Message log window opens. You can use the Message
log window to debug issues with video playback. By
default, the window only opens for failure messages.
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Pane Option Category Option Descriptions

Core Source UI Keyboard commands respect playback mode
check box — Select to make keyboard shortcut keys
aware of your playback mode selection. If you clear
this check box, the keyboard shortcut keys behave
as if the playback mode is set to Forward play and
Repeat is set to off.

Recently used sources list parameter — Specifies
the number of sources listed in the File menu.

Sources Simulink Select the Enabled check box to enable connections to
Simulink models. You must have Simulink installed.

Sources File Select the Enabled check box to enable connections to
files (the default).

Default open file path parameter — Specify the
directory that is displayed in the Connect to File
dialog box when you click File > Open.

Sources Workspace Select the Enabled check box to enable connections to
variables in the workspace (the default). There are no
options associated with this selection.

Visuals Video Select the Enabled check box to use video
visualization.

Tools Image Tool Select the Enabled check box to include the Image
Viewer.

Open new Image Tool window for each export
check box — Opens a new Image Viewer for each
exported frame.

Tools Pixel Region Select the Enabled check box to include the Pixel
Region tool in the Video Viewer app (the default).

Tools Image Navigation
Tools

Select the Enabled check box to include the zoom and
pan tools in the Video Viewer app (the default).

Tools Instrumentation Sets Select the Enabled check box to include
instrumentation sets in the Video Viewer app.
Provides a way to save your current configuration.
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Save Image Viewer App Configuration Settings

To save your configuration settings for future use, select File > Configuration Set >
Save as.

Note: By default, the Video Viewer uses the configuration settings from the file
implay.cfg. If you want to store your configuration settings in this file, you should first
create a backup copy of the file.

Specifying the Frame Rate

To decrease or increase the playback rate, select Frame Rate from the Playback menu,
or use the keyboard shortcut T. The Frame Rate dialog box displays the frame rate of the
source, lets you change the rate at which the Video Viewer app plays the image sequence
or video, and displays the actual playback rate. The playback rate is the number of
frames the Video Viewer processes per second.

If you want to increase the actual playback rate, but your system's hardware cannot keep
up with the desired rate, select the Allow frame drop to achieve desired playback
rate check box. This parameter enables the Video Viewer app to achieve the playback
rate by dropping frames. When you select this option, the Frame Rate dialog box displays
several additional options that you can use to specify the minimum and maximum
refresh rates. If your hardware allows it, increase the refresh rate to achieve a smoother
playback. However, if you specify a small range for the refresh rate, the computed frame
replay schedule may lead to a choppy replay, and a warning will appear.
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Specify Color Map

To specify the colormap to apply to the intensity values, select Colormap from the Tools
menu, or use the keyboard shortcut C. The Video Viewer displays a dialog box that
enables you to change the colormap.

Use the Colormap parameter to specify a particular colormap.

If you know that the pixel values do not use the entire data type range, you can select
the Specify range of displayed pixel values check box and enter the range for your
data. The dialog box automatically displays the range based on the data type of the pixel
values.

Get Information about an Image Sequence

To view basic information about the image data, click the Video Information button

 in the Video Viewer toolbar or select Video Information from the Tools menu.
The Video Viewer displays a dialog box containing basic information about the image
sequence, such as the size of each frame, the frame rate, and the total number of frames.
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View Image Sequence as Montage

This example shows how to view multiple frames in a multiframe array at one time, use
the montage function. montage displays all the image frames, arranging them into a
rectangular grid. The montage of images is a single image object. The image frames can
be grayscale, indexed, or truecolor images. If you specify indexed images, they all must
use the same colormap.

Create an array of truecolor images.

onion = imread('onion.png');

onionArray = repmat(onion, [ 1 1 1 4 ]);

Display all the images at once, in a montage. By default, the montage function displays
the images in a grid. The first image frame is in the first position of the first row, the
next frame is in the second position of the first row, and so on.

montage(onionArray);
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To specify a different number of rows and columns, use the 'size' parameter. For
example, to display the images in one horizontal row, specify the 'size' parameter with
the value [1 NaN] . Using other montage parameters you can specify which images you
want to display and adjust the contrast of the images displayed.

montage(onionArray,'size',[1 NaN]);
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Convert Multiframe Image to Movie

To create a MATLAB movie from a multiframe image array, use the immovie function.
This example creates a movie from a multiframe indexed image.

mov = immovie(X,map);

In the example, X is a four-dimensional array of images that you want to use for the
movie.

To play the movie, use the implay function.

implay(mov);

This example loads the multiframe image mri.tif and makes a movie out of it. It won't
do any good to show the results here, so try it out; it's fun to watch.

mri = uint8(zeros(128,128,1,27)); 

for frame=1:27

 [mri(:,:,:,frame),map] = imread('mri.tif',frame);

end

mov = immovie(mri,map);

implay(mov);

Note To view a MATLAB movie, you must have MATLAB software installed. To make a
movie that can be run outside the MATLAB environment, use the VideoWriter class to
create a movie in a standard video format, such as, AVI.
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Display Different Image Types

In this section...

“Display Indexed Images” on page 4-71
“Display Grayscale Images” on page 4-72
“Display Binary Images” on page 4-73
“Display Truecolor Images” on page 4-75

If you need help determining what type of image you are working with, see “Image Types
in the Toolbox” on page 2-9.

Display Indexed Images

To display an indexed image, using either imshow or imtool, specify both the image
matrix and the colormap. This documentation uses the variable name X to represent an
indexed image in the workspace, and map to represent the colormap.

imshow(X,map)

or

imtool(X,map)

For each pixel in X, these functions display the color stored in the corresponding row
of map. If the image matrix data is of class double, the value 1 points to the first row
in the colormap, the value 2 points to the second row, and so on. However, if the image
matrix data is of class uint8 or uint16, the value 0 (zero) points to the first row in
the colormap, the value 1 points to the second row, and so on. This offset is handled
automatically by the imtool and imshow functions.

If the colormap contains a greater number of colors than the image, the functions ignore
the extra colors in the colormap. If the colormap contains fewer colors than the image
requires, the functions set all image pixels over the limits of the colormap's capacity
to the last color in the colormap. For example, if an image of class uint8 contains 256
colors, and you display it with a colormap that contains only 16 colors, all pixels with a
value of 15 or higher are displayed with the last color in the colormap.
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Display Grayscale Images

To display a grayscale image, call the imshow function or open the Image Viewer app.
This documentation uses the variable name I to represent a grayscale image in the
workspace.

Both functions display the image by scaling the intensity values to serve as indices into a
grayscale colormap.

If I is double, a pixel value of 0.0 is displayed as black, a pixel value of 1.0 is displayed
as white, and pixel values in between are displayed as shades of gray. If I is uint8, then
a pixel value of 255 is displayed as white. If I is uint16, then a pixel value of 65535 is
displayed as white.

Grayscale images are similar to indexed images in that each uses an m-by-3 RGB
colormap, but you normally do not specify a colormap for a grayscale image. MATLAB
displays grayscale images by using a grayscale system colormap (where R=G=B). By
default, the number of levels of gray in the colormap is 256 on systems with 24-bit color,
and 64 or 32 on other systems. (See “Displaying Colors” on page 14-2 for a detailed
explanation.)

Display Grayscale Images with Unconventional Ranges

In some cases, the image data you want to display as a grayscale image could have a
display range that is outside the conventional toolbox range (i.e., [0,1] for single or
double arrays, [0,255] for uint8 arrays, [0,65535] for uint16 arrays, or [-32767,32768]
for int16 arrays). For example, if you filter a grayscale image, some of the output data
could fall outside the range of the original data.

To display unconventional range data as an image, you can specify the display range
directly, using this syntax for both the imshow and imtool functions.

imshow(I,'DisplayRange',[low high])

or

imtool(I,'DisplayRange',[low high])

If you use an empty matrix ([]) for the display range, these functions scale the data
automatically, setting low and high to the minimum and maximum values in the array.

The next example filters a grayscale image, creating unconventional range data. The
example calls imtool to display the image in the Image Viewer, using the automatic
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scaling option. If you execute this example, note the display range specified in the lower
right corner of the Image Viewer window.

I = imread('testpat1.png');

J = filter2([1 2;-1 -2],I);

imtool(J,'DisplayRange',[]);

Display Binary Images

In MATLAB, a binary image is of class logical. Binary images contain only 0's and 1's.
Pixels with the value 0 are displayed as black; pixels with the value 1 are displayed as
white.
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Note For the toolbox to interpret the image as binary, it must be of class logical.
Grayscale images that happen to contain only 0's and 1's are not binary images.

To display a binary image, call the imshow function or open the Image Viewer app. For
example, this code reads a binary image into the MATLAB workspace and then displays
the image. This documentation uses the variable name BW to represent a binary image in
the workspace

BW = imread('circles.png');

imshow(BW)

Change Display Colors of Binary Image

You might prefer to invert binary images when you display them, so that 0 values are
displayed as white and 1 values are displayed as black. To do this, use the NOT (~)
operator in MATLAB. (In this figure, a box is drawn around the image to show the image
boundary.) For example:

imshow(~BW)
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You can also display a binary image using the indexed image colormap syntax. For
example, the following command specifies a two-row colormap that displays 0's as red
and 1's as blue.

imshow(BW,[1 0 0; 0 0 1])

Display Truecolor Images

Truecolor images, also called RGB images, represent color values directly, rather than
through a colormap. A truecolor image is an m-by-n-by-3 array. For each pixel (r,c) in
the image, the color is represented by the triplet (r,c,1:3).

To display a truecolor image, call the imshow function or open the Image Viewer app.
For example, this code reads a truecolor image into the MATLAB workspace and then
displays the image. This documentation uses the variable name RGB to represent a
truecolor image in the workspace

RGB = imread('peppers.png');
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imshow(RGB)

Systems that use 24 bits per screen pixel can display truecolor images directly, because
they allocate 8 bits (256 levels) each to the red, green, and blue color planes. On systems
with fewer colors, imshow displays the image using a combination of color approximation
and dithering. See “Displaying Colors” on page 14-2 for more information.

Note If you display a color image and it appears in black and white, check if the image is
an indexed image. With indexed images, you must specify the colormap associated with
the image. For more information, see “Display Indexed Images” on page 4-71.



 Add Colorbar to Displayed Image

4-77

Add Colorbar to Displayed Image

To display an image with a colorbar that indicates the range of intensity values, first use
the imshow function to display the image in a MATLAB figure window and then call the
colorbar function to add the colorbar to the image.

When you add a colorbar to an axes object that contains an image object, the colorbar
indicates the data values that the different colors in the image correspond to.

If you want to add a colorbar to an image displayed in the Image Viewer, select the
Print to Figure option from the File menu. The Image Viewer displays the image in a
separate figure window to which you can add a colorbar.

Seeing the correspondence between data values and the colors displayed by using a
colorbar is especially useful if you are displaying unconventional range data as an image,
as described under “Display Grayscale Images with Unconventional Ranges” on page
4-72.

In the example below, a grayscale image of class uint8 is filtered, resulting in data that
is no longer in the range [0,255].

RGB = imread('saturn.png');

I = rgb2gray(RGB);

h = [1 2 1; 0 0 0; -1 -2 -1];

I2 = filter2(h,I);

imshow(I2,'DisplayRange',[]), colorbar
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Print Images

If you want to output a MATLAB image to use in another application (such as a word-
processing program or graphics editor), use imwrite to create a file in the appropriate
format. See “Writing Image Data to Files” on page 3-5 for details.

If you want to print an image, use imshow to display the image in a MATLAB figure
window. If you are using the Image Viewer, you must use the Print to Figure option on
the File menu. When you choose this option, the Image Viewer opens a separate figure
window and displays the image in it. You can access the standard MATLAB printing
capabilities in this figure window. You can also use the Print to Figure option to print
the image displayed in the Overview tool and the Pixel Region tool.

Once the image is displayed in a figure window, you can use either the MATLAB print
command or the Print option from the File menu of the figure window to print the
image. When you print from the figure window, the output includes nonimage elements
such as labels, titles, and other annotations.

Handle Graphics Properties That Impact Printing

The output reflects the settings of various properties of Handle Graphic objects. In some
cases, you might need to change the settings of certain properties to get the results you
want. Here are some tips that could be helpful when you print images:

• Image colors print as shown on the screen. This means that images are not affected by
the figure object's InvertHardcopy property.

• To ensure that printed images have the proper size and aspect ratio, set the figure
object's PaperPositionMode property to auto. When PaperPositionMode is set
to auto, the width and height of the printed figure are determined by the figure's
dimensions on the screen. By default, the value of PaperPositionMode is manual. If
you want the default value of PaperPositionMode to be auto, you can add this line
to your startup.m file.

set(0,'DefaultFigurePaperPositionMode','auto')

For detailed information about printing with File/Print or the print command (and
for information about Handle Graphics), see “Overview of Printing and Exporting ” in
the MATLAB Graphics documentation. For a complete list of options for the print
command, enter help print at the MATLAB command-line prompt or see the print
command reference page in the MATLAB documentation.
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Image Processing Toolbox Preferences

In this section...

“Retrieve Values of Toolbox Preferences” on page 4-80
“Set Values of Toolbox Preferences” on page 4-80

You can use Image Processing Toolbox preferences to control certain characteristics of
how imshow and the Image Viewer app display images on your screen. For example,
using toolbox preferences, you can specify the initial magnification used.

Retrieve Values of Toolbox Preferences

To determine the current value of Image Processing Toolbox preferences, you can look in
the Preferences dialog box or use the iptgetpref function.

To open the Preference dialog box, click Preferences in the Home tab in the MATLAB
desktop. In the Preferences dialog box, select Image Processing Toolbox. You can also
access Image Processing Toolbox preferences from the Image Viewer File menu, or by
typing iptprefs at the command line.

To retrieve the values of Image Processing Toolbox preferences programmatically,
type iptgetpref at the command prompt. The following example uses iptgetpref
to retrieve the value to determine the value of the ImtoolInitialMagnification
preference.

iptgetpref('ImtoolInitialMagnification')

ans =

   100

Preference names are case insensitive and can be abbreviated. For a complete list of
toolbox preferences, see the iptprefs reference page.

Set Values of Toolbox Preferences

To set the value of Image Processing Toolbox preferences, you can use the Preferences
dialog box or use the iptsetpref function.
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To open the Preference dialog box, click Preferences in the Home tab in the MATLAB
desktop. In the Preferences dialog box, select Image Processing Toolbox. You can also
access Image Processing Toolbox preferences from the Image Viewer File menu, or by
typing iptprefs at the command line.

To specify the value of a toolbox preference, use the iptsetpref function. This example
calls iptsetpref to specify that imshow resize the figure window so that it fits tightly
around displayed images.

iptsetpref('ImshowBorder', 'tight');

For a table of the available preferences, see the iptprefs reference page.
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Building GUIs with Modular Tools

This chapter describes how to use the toolbox modular tools to create custom image
processing applications.

• “Modular Interactive Tools” on page 5-2
• “Displaying the Target Image” on page 5-9
• “Creating the Modular Tools” on page 5-10
• “Customizing Modular Tool Interactivity” on page 5-29
• “Creating Your Own Modular Tools” on page 5-34
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Modular Interactive Tools

The toolbox includes several modular interactive tools that you can activate from the
command line and use with images displayed in a MATLAB figure window, called the
target image in this documentation. The tools are modular because they can be used
independently or in combination to create custom graphical user interfaces (GUIs) for
image processing applications. Using the tools typically involves the following steps.

Step Description Notes

1 Display the image to be processed
(called the target image) in a figure
window.

Use the imshow function to display the
target image, see “Displaying the Target
Image” on page 5-9.

2 Create the modular tool, associating
it with the target image.

You use the modular tool creation functions
to create the tools — see Summary of
Modular Tools

Most of the tools associate themselves with
the image in the current axes, by default,
but you can specify the handle to a specific
image object, or a handle to a figure, axes,
or uipanel object that contains an image.
See “Creating the Modular Tools” on page
5-10.

Depending on how you designed your GUI,
you might also want to specify the parent
object of the modular tool itself. This is
optional; by default, the tools either use the
same parent as the target image or open in
a separate figure window. See “Specifying
the Parent of a Modular Tool” on page
5-14 for more information.

You might need to specify the position of
the graphics objects in the GUI, including
the modular tools. See “Positioning the
Modular Tools in a GUI” on page 5-18
for more information.
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Step Description Notes

3 Set up interactivity between the tool
and the target image. (Optional)

The modular tools all set up their
interactive connections to the target image
automatically. However, you can also
specify custom connectivity using modular
tool APIs. See “Customizing Modular Tool
Interactivity” on page 5-29 for more
information.

The following table lists the modular tools in alphabetical order. The table includes an
illustration of each tool and the function you use to create it.

Note: The Image Processing Toolbox GUI, Image Tool, uses these modular tools — see
“Using the Image Viewer App to Explore Images” on page 4-13.

Summary of Modular Tools

Modular Tool Example Description

Adjust Contrast tool Displays a histogram of the
target image and enables
interactive adjustment of
contrast and brightness by
manipulation of the display
range.

Use the imcontrast function
to create the tool in a separate
figure window and associate it
with an image.
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Modular Tool Example Description

Choose Colormap
tool

Allows you to change the
colormap of the target figure.
You can select one of the
MATLAB colormaps, select
a colormap variable from the
MATLAB workspace, or enter a
custom MATLAB expression.

Use the imcolormaptool
function to launch the tool in a
separate figure window.

Crop Image tool Displays a draggable, resizable
rectangle on an image. You can
move and resize the rectangle
to define the crop region.
Double-click to perform the crop
operation or select Crop Image
from the context menu.

Use the imcrop function to
create the tool and associate it
with an image.

Display Range tool Displays a text string identifying
the display range values of the
associated image.

Use the imdisplayrange
function to create the tool,
associate it with an image, and
embed it in a figure or uipanel.
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Modular Tool Example Description

Distance tool Displays a draggable, resizable
line on an image. Superimposed
on the line is the distance
between the two endpoints of the
line. The distance is measured
in units specified by the XData
and YData properties, which is
pixels by default.

Use the imdistline function to
create the tool and associate it
with an image.

Image Information
tool
im

Displays basic attributes about
the target image. If the image
displayed was specified as a
graphics file, the tool displays
any metadata that the image file
might contain.

Use the imageinfo function
to create the tool in a separate
figure window and associate it
with an image.

Magnification box Creates a text edit box
containing the current
magnification of the target
image. Users can change the
magnification of the image by
entering a new magnification
value.

Use immagbox to create the tool,
associate it with an image, and
embed it in a figure or uipanel.

Note: The target image must be
contained in a scroll panel.
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Modular Tool Example Description

Overview tool Displays the target image in
its entirety with the portion
currently visible in the scroll
panel outlined by a rectangle
superimposed on the image.
Moving the rectangle changes
the portion of the target image
that is currently visible in the
scroll panel.

Use imoverview to create the
tool in a separate figure window
and associate it with an image.

Use imoverviewpanel to
create the tool in a uipanel that
can be embedded within another
figure or uipanel.

Note: The target image must be
contained in a scroll panel.

Pixel Information
tool

Displays information about the
pixel the mouse is over in the
target image.

Use impixelinfo to create
the tool, associate it with an
image, and display it in a figure
or uipanel.

If you want to display only
the pixel values, without
the Pixel info label, use
impixelinfoval.
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Modular Tool Example Description

Pixel Region tool Display pixel values for a
specified region in the target
image.

Use impixelregion to create
the tool in a separate figure
window and associate it with an
image.

Use impixelregionpanel to
create the tool as a uipanel that
can be embedded within another
figure or uipanel.

Save Image tool Display the Save Image dialog
box. Use this to specify the name
of an output image and choose
the file format used to store the
image.

Use imsave to create the tool
in a separate figure window and
associate it with an image.
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Modular Tool Example Description

Scroll Panel tool Display target image in a
scrollable panel.

Use imscrollpanel to add
a scroll panel to an image
displayed in a figure window.
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Displaying the Target Image

As the foundation for any image processing GUI you create, use imshow to display the
target image (or images) in a MATLAB figure window. (You can also use the MATLAB
image or imagesc functions.) Once the image is displayed in the figure, you can
associate any of the modular tools with the image displayed in the figure.

This example uses imshow to display an image in a figure window.

himage = imshow('pout.tif');

Because some of the modular tools add themselves to the figure window containing the
image, make sure that the Image Processing Toolbox ImshowBorder preference is set to
'loose', if you are using the imshow function. (This is the default setting.) By including
a border, you ensure that the modular tools are not displayed over the image in the
figure.
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Creating the Modular Tools

In this section...

“Overview” on page 5-10
“Associating Modular Tools with a Particular Image” on page 5-11
“Getting the Handle of the Target Image” on page 5-13
“Specifying the Parent of a Modular Tool” on page 5-14
“Positioning the Modular Tools in a GUI” on page 5-18
“Build a Pixel Information GUI” on page 5-20
“Adding Navigation Aids to a GUI” on page 5-22

Overview

To associate a modular tool with a target image displayed in a MATLAB figure window,
you must create the tool using the appropriate tool creation function. You specify a
handle to the target image as an argument to the tool creation function. The function
creates the tool and automatically sets up the interactivity connection between the tool
and the target image.

By default, most of the modular tool creation functions support a no-argument syntax
that uses the image in the current figure as the target image. If the current figure
contains multiple images, the tools associate themselves with the first image in the
figure object's children (the last image created). impixelinfo, impixelinfoval and
imdisplayrange can work with multiple images in a figure.

For example, to use the Pixel Information tool with a target image, display the image in a
figure window, using imshow, and then call the impixelinfo function to create the tool.
In this example, the image in the current figure is the target image.

imshow('pout.tif');

impixelinfo

The following figure shows the target image in a figure with the Pixel Information tool
in the lower left corner of the window. The Pixel Information tool automatically sets up
a connection to the target image: when you move the pointer over the image, the tool
displays the x- and y-coordinates and value of the pixel under the pointer.
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Associating Modular Tools with a Particular Image

You can specify the target image of the modular tool when you create it by passing a
handle to the target image as an argument to the modular tool creation function. You can
also specify a handle to a figure, axes, or uipanel object that contains the target image.

Continuing the example in the previous section, you might want to add the Display
Range tool to the figure window that already contains the Pixel Information tool. To do
this, call the imdisplayrange function, specifying the handle to the target image. You
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could also have specified the handle of the figure, axes, or uipanel object containing the
target image.

himage = imshow('pout.tif');

hpixelinfopanel = impixelinfo(himage);

hdrangepanel = imdisplayrange(himage);

Note that the example retrieves handles to the uipanel objects created by the
impixelinfo and imdisplayrange functions; both tools are uipanel objects. It
can be helpful to get handles to the tools if you want to change their positioning. See
“Positioning the Modular Tools in a GUI” on page 5-18 for more information.

The following figure shows the target image in a figure with the Pixel Information tool in
the lower left corner and the Display Range tool in the lower right corner of the window.
The Display Range tool automatically sets up a connection to the target image: when you
move the pointer over the image (or images) in the figure, the Display Range tool shows
the display range of the image.



 Creating the Modular Tools

5-13

Getting the Handle of the Target Image

The examples in the previous section use the optional imshow syntax that returns a
handle to the image displayed, himage. When creating GUIs with the modular tools,
having a handle to the target image can be useful. You can get the handle when you first
display the image, using this optional imshow syntax. You can also get a handle to the
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target image using the imhandles function. The imhandles function returns all the
image objects that are children of a specified figure, axes, uipanel, or image object.

For example, imshow returns a handle to the image in this syntax.

hfig = figure;

himage = imshow('moon.tif')

himage =

  152.0055

When you call the imhandles function, specifying a handle to the figure (or axes)
containing the image, it returns a handle to the same image.

himage2 = imhandles(hfig)

himage2 =

  152.0055

Specifying the Parent of a Modular Tool

When you create a modular tool, in addition to specifying the target image, you can
optionally specify the object that you want to be the parent of the tool. By specifying the
parent, you determine where the tool appears on your screen. Using this syntax of the
modular tool creation functions, you can add the tool to the figure window containing
the target image, open the tool in a separate figure window, or create some other
combination.

Specifying the parent is optional; the modular tools all have a default behavior. Some of
the smaller tools, such as the Pixel Information tool, use the parent of the target image
as their parent, inserting themselves in the same figure window as the target image.
Other modular tools, such as the Pixel Region tool or the Overview tool, open in separate
figures of their own.

Tools With Separate Creation Functions

Two of the tools, the Pixel Region tool and the Overview tool, have a separate creation
function to provide this capability. Their primary creation functions, imoverview and
impixelregion, open the tools in a separate figure window. To specify a different
parent, you must use the imoverviewpanel and impixelregionpanel functions.
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Note The Overview tool and the Pixel Region tool provide additional capabilities when
created in their own figure windows. For example, both tools include zoom buttons that
are not part of their uipanel versions.

Example: Embedding the Pixel Region Tool in an Existing Figure

This example shows the default behavior when you create the Pixel Region tool using the
impixelregion function. The tool opens in a separate figure window, as shown in the
following figure.

himage = imshow('pout.tif')

hpixelinfopanel = impixelinfo(himage);

hdrangepanel = imdisplayrange(himage);

hpixreg = impixelregion(himage);



5 Building GUIs with Modular Tools

5-16

To embed the Pixel Region tool in the same window as the target image, you must specify
the handle of the target image's parent figure as the parent of the Pixel Region tool when
you create it.

The following example creates a figure and an axes object, getting handles to both
objects. The example needs these handles to perform some repositioning of the objects in
the figure to ensure their visibility. See “Positioning the Modular Tools in a GUI” on page
5-18 for more information. The example then creates the modular tools, specifying the
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figure containing the target image as the parent of the Pixel Region tool. Note that the
example uses the impixelregionpanel function to create the tool.

hfig = figure;

hax = axes('units','normalized','position',[0 .5 1 .5]);

himage = imshow('pout.tif')

hpixelinfopanel = impixelinfo(himage);

hdrangepanel = imdisplayrange(himage);

hpixreg = impixelregionpanel(hfig,himage);

set(hpixreg, 'Units','normalized','Position',[0 .08 1 .4]);

The following figure shows the Pixel Region embedded in the same figure as the target
image.
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Positioning the Modular Tools in a GUI

When you create the modular tools, they have default positioning behavior. For example,
the impixelinfo function creates the tool as a uipanel object that is the full width of the
figure window, positioned in the lower left corner of the target image figure window.
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Because the modular tools are constructed from standard Handle Graphics objects,
such as uipanel objects, you can use properties of the objects to change their default
positioning or other characteristics.

For example, in “Specifying the Parent of a Modular Tool” on page 5-14, when the
Pixel Region tool was embedded in the same figure window as the target image, the
example had to reposition both the image object and the Pixel Region tool uipanel object
to make them both visible in the figure window.

Specifying the Position with a Position Vector

To specify the position of a modular tool or other graphics object, set the value of the
Position property of the object. As the value of this property, you specify a four-element
position vector [left bottom width height], where left and bottom specify the
distance from the lower left corner of the parent container object, such as a figure. The
width and height specify the dimensions of the object.

When you use a position vector, you can specify the units of the values in the vector by
setting the value of the Units property of the object. To allow better resizing behavior,
use normalized units because they specify the relative position, not the exact location in
pixels. See the reference page for the Handle Graphics object for more details.

For example, when you first create an embedded Pixel Region tool in a figure, it appears
to take over the entire figure because, by default, the position vector is set to [0 0 1 1],
in normalized units. This position vector tells the tool to align itself with the bottom left
corner of its parent and fill the entire object. To accommodate the image and the Pixel
Information tool and Display Range tools, change the position of the Pixel Region tool in
the lower half of the figure window, leaving room at the bottom for the Pixel Information
and Display Range tools. Here is the position vector for the Pixel Region tool.

set(hpixreg, 'Units','normalized','Position',[0 .08 1 .4])

To accommodate the Pixel Region tool, reposition the target image so that it fits in the
upper half of the figure window, using the following position vector. To reposition the
image, you must specify the Position property of the axes object that contains it; image
objects do not have a Position property.

set(hax,'Units','normalized','Position',[0 0.5 1 0.5])
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Build a Pixel Information GUI

This example shows how to use the tools to create a simple GUI that provides
information about pixels and features in an image. The GUI displays an image and
includes the following modular pixel information tools:

• Display Range tool
• Distance tool
• Pixel Information tool
• Pixel Region tool panel

The example suppresses the figure window toolbar and menu bar because the standard
figure zoom tools are not compatible with the toolbox modular navigation tools — see
“Adding Navigation Aids to a GUI” on page 5-22.

function my_pixinfotool(im)

% Create figure, setting up properties

hfig = figure('Toolbar','none',...

              'Menubar', 'none',...

              'Name','My Pixel Info Tool',...

              'NumberTitle','off',...

              'IntegerHandle','off');

% Create axes and reposition the axes

% to accommodate the Pixel Region tool panel

hax = axes('Units','normalized',...

           'Position',[0 .5 1 .5]);

% Display image in the axes and get a handle to the image

himage = imshow(im);

% Add Distance tool, specifying axes as parent

hdist = imdistline(hax);

% Add Pixel Information tool, specifying image as parent

hpixinfo = impixelinfo(himage);

% Add Display Range tool, specifying image as parent

hdrange = imdisplayrange(himage);

% Add Pixel Region tool panel, specifying figure as parent

% and image as target
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hpixreg = impixelregionpanel(hfig,himage);

% Reposition the Pixel Region tool to fit in the figure

% window, leaving room for the Pixel Information and

% Display Range tools.

set(hpixreg, 'units','normalized','position',[0 .08 1 .4])

To use the tool, pass it an image that is already in the MATLAB workspace.

pout = imread('pout.tif');

my_pixinfotool(pout);

The tool opens a figure window, displaying the image in the upper half, with the Distance
tool overlaid on the image, and the Pixel Information tool, Display Range tool, and the
Pixel Region tool panel in the lower half of the figure.
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Adding Navigation Aids to a GUI

Note The toolbox modular navigation tools are incompatible with standard MATLAB
figure window navigation tools. When using these tools in a GUI, suppress the toolbar
and menu bar in the figure windows to avoid conflicts between the tools.
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The toolbox includes several modular tools that you can use to add navigation aids to a
GUI application:

• Scroll Panel
• Overview tool
• Magnification box

The Scroll Panel is the primary navigation tool; it is a prerequisite for the other
navigation tools. When you display an image in a Scroll Panel, the tool displays only a
portion of the image, if it is too big to fit into the figure window. When only a portion of
the image is visible, the Scroll Panel adds horizontal and vertical scroll bars, to enable
viewing of the parts of the image that are not currently visible.

Once you create a Scroll Panel, you can optionally add the other modular navigation
tools: the Overview tool and the Magnification tool. The Overview tool displays a view
of the entire image, scaled to fit, with a rectangle superimposed over it that indicates
the part of the image that is currently visible in the scroll panel. The Magnification
Box displays the current magnification of the image and can be used to change the
magnification.

The following sections provide more details.

• “Understanding Scroll Panels” on page 5-23 — Adding a scroll panel to an image
display changes the relationship of the graphics objects used in the display. This
section provides some essential background.

• “Example: Building a Navigation GUI for Large Images” on page 5-26 — This
section shows how to add a scroll panel to an image display.

Understanding Scroll Panels

When you display an image in a scroll panel, it changes the object hierarchy of your
displayed image. This diagram illustrates the typical object hierarchy for an image
displayed in an axes object in a figure object.

hfig = figure;

himage = imshow('concordaerial.png');

The following figure shows this object hierarchy.
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Object Hierarchy of Image Displayed in a Figure

When you call the imscrollpanel function to put the target image in a scrollable
window, this object hierarchy changes. For example, this code adds a scroll panel to an
image displayed in a figure window, specifying the parent of the scroll panel and the
target image as arguments. The example suppresses the figure window toolbar and menu
bar because they are not compatible with the scroll panel navigation tools.

hfig = figure('Toolbar','none',...

              'Menubar', 'none');

himage = imshow('concordaerial.png');

hpanel = imscrollpanel(hfig,himage);

The following figure shows the object hierarchy after the call to imscrollpanel. Note
how imscrollpanel inserts a new object (shaded in gray) into the hierarchy between
the figure object and the axes object containing the image. (To change the image data
displayed in the scroll bar, use the replaceImage function in the imscrollpanel API.)
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Object Hierarchy of Image Displayed in Scroll Panel

The following figure shows how these graphics objects appear in the scrollable image as it
is displayed on the screen.
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Components of a Scroll Panel

Example: Building a Navigation GUI for Large Images

If your work typically requires that you view large images, you might want to create a
custom image display function that includes the modular navigation tools.

This example creates a tool that accepts an image as an argument and displays the
image in a scroll panel with an Overview tool and a Magnification box.

Note Because the toolbox scrollable navigation is incompatible with standard MATLAB
figure window navigation tools, the example suppresses the toolbar and menu bar in the
figure window.

function my_large_image_display(im)

% Create a figure without toolbar and menubar.

hfig = figure('Toolbar','none',...

              'Menubar', 'none',...

              'Name','My Large Image Display Tool',...

              'NumberTitle','off',...
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              'IntegerHandle','off');

% Display the image in a figure with imshow.

himage = imshow(im);

% Add the scroll panel.

hpanel = imscrollpanel(hfig,himage);

% Position the scroll panel to accommodate the other tools.

set(hpanel,'Units','normalized','Position',[0 .1 1 .9]);

% Add the Magnification box.

hMagBox = immagbox(hfig,himage);

% Position the Magnification box

pos = get(hMagBox,'Position');

set(hMagBox,'Position',[0 0 pos(3) pos(4)]);

% Add the Overview tool.

hovervw = imoverview(himage);

To use the tool, pass it a large image that is already in the MATLAB workspace.

big_image = imread('peppers.png');

my_large_image_display(big_image)

The tool opens a figure window, displaying the image in a scroll panel with the Overview
tool and the Magnification Box tool.
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Customizing Modular Tool Interactivity

In this section...

“Overview” on page 5-29
“Build Image Comparison Tool” on page 5-29

Overview

When you create a modular tool and associate it with a target image, the tool
automatically makes the necessary connections to the target image to do its job. For
example, the Pixel Information tool sets up a connection to the target image so that it can
display the location and value of the pixel currently under the pointer.

As another example, the Overview tool sets up a two-way connection to the target image:

• Target image to the Overview tool — If the visible portion of the image changes,
by scrolling, panning, or by changing the magnification, the Overview tool changes
the size and location of the detail rectangle to the indicate the portion of the image
that is now visible.

• Overview tool to the target image — If a user moves the detail rectangle in the
Overview tool, the portion of the target image visible in the scroll panel is updated.

The modular tools accomplish this interactivity by using callback properties of the
graphics objects. For example, the figure object supports a WindowButtonMotionFcn
callback that executes whenever the mouse button is depressed. You can customize
the connectivity of a modular tool by using the application programmer interface (API)
associated with the tool to set up callbacks to get notification of events.

For example, the Magnification box supports a single API function: setMagnification.
You can use this API function to set the magnification value displayed in the
Magnification box. The Magnification box automatically notifies the scroll panel to
change the magnification of the image based on the value. The scroll panel also supports
an extensive set of API functions. To get information about these APIs, see the reference
page for the modular tool.

Build Image Comparison Tool

To illustrate how to use callbacks to make the connections required for interactions
between tools, this example uses the Scroll Panel API to build a simple image comparison



5 Building GUIs with Modular Tools

5-30

GUI. This custom tool displays two images side by side in scroll panels that are
synchronized in location and magnification. The custom tool also includes an Overview
tool and a Magnification box.

function my_image_compare_tool(left_image, right_image)

% Create the figure

hFig = figure('Toolbar','none',...

              'Menubar','none',...

              'Name','My Image Compare Tool',...

              'NumberTitle','off',...

              'IntegerHandle','off');

          

% Display left image              

subplot(121)  

hImL = imshow(left_image);

% Display right image

subplot(122)

hImR = imshow(right_image);

% Create a scroll panel for left image

hSpL = imscrollpanel(hFig,hImL);

set(hSpL,'Units','normalized',...

    'Position',[0 0.1 .5 0.9])

% Create scroll panel for right image

hSpR = imscrollpanel(hFig,hImR);

set(hSpR,'Units','normalized',...

    'Position',[0.5 0.1 .5 0.9])

% Add a Magnification box 

hMagBox = immagbox(hFig,hImL);

pos = get(hMagBox,'Position');

set(hMagBox,'Position',[0 0 pos(3) pos(4)])

%% Add an Overview tool

imoverview(hImL) 

%% Get APIs from the scroll panels 

apiL = iptgetapi(hSpL);

apiR = iptgetapi(hSpR);

%% Synchronize left and right scroll panels
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apiL.setMagnification(apiR.getMagnification())

apiL.setVisibleLocation(apiR.getVisibleLocation())

% When magnification changes on left scroll panel, 

% tell right scroll panel

apiL.addNewMagnificationCallback(apiR.setMagnification);

% When magnification changes on right scroll panel, 

% tell left scroll panel

apiR.addNewMagnificationCallback(apiL.setMagnification);

% When location changes on left scroll panel, 

% tell right scroll panel

apiL.addNewLocationCallback(apiR.setVisibleLocation);

% When location changes on right scroll panel, 

% tell left scroll panel

apiR.addNewLocationCallback(apiL.setVisibleLocation);

The tool sets up a complex interaction between the scroll panels with just a few calls to
Scroll Panel API functions. In the code, the tool specifies a callback function to execute
every time the magnification changes. The function specified is the setMagnification
API function of the other scroll panel. Thus, whenever the magnification changes in one
of the scroll panels, the other scroll panel changes its magnification to match. The tool
sets up a similar connection for position changes.

The following figure is a sequence diagram that shows the interaction between the
two scroll panels set up by the comparison tool for both changes in magnification and
location.
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Scroll Panel Connections in Custom Image Comparison Tool

To use the image comparison tool, pass it two images as arguments.

left_image = imread('peppers.png');

right_image = edge(left_image(:,:,1),'canny');

my_image_compare_tool(left_image,right_image);
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The tool opens a figure window, displaying the two images side by side, in separate scroll
panels. The custom compare tool also includes an Overview tool and a Magnification box.
When you move the detail rectangle in the Overview tool or change the magnification in
one image, both images respond.
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Creating Your Own Modular Tools

In this section...

“Overview” on page 5-34
“Create Angle Measurement Tool” on page 5-35

Overview

Because the toolbox uses an open architecture for the modular interactive tools, you
can extend the toolbox by creating your own modular interactive tools, using standard
Handle Graphics concepts and techniques. To help you create tools that integrate well
with the existing modular interactive tools, the toolbox includes many utility functions
that perform commonly needed tasks.

The utility functions can help check the input arguments to your tool, add callback
functions to a callback list or remove them from a list, and align figure windows in
relation to a fixed window. The toolbox also provides a set of functions that you can use to
define a region-of-interest of various shapes, including points, lines, rectangles, ellipses,
polygons, and freehand shapes — see “Create Angle Measurement Tool” on page 5-35
for more information.

The following table lists these utility functions in alphabetical order. See the function's
reference page for more detailed information.

Utility Function Description

getimagemodel Retrieve image model objects from image handles
getrangefromclass Get default display range of image, based on its class
imagemodel Access to properties of an image relevant to its display
imattributes Return information about image attributes
imellipse Create draggable, resizable ellipse
imfreehand Create draggable freehand region
imgca Get handle to current axes containing an image
imgcf Get handle to most recent current figure containing an

image
imgetfile Display Open Image dialog box
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Utility Function Description

imhandles Get all image handles
imline Create draggable, resizable line
impoint Create draggable point
impoly Create draggable, resizable polygon
imputfile Display Save Image dialog box
imrect Create draggable, resizable rectangle
iptaddcallback Add function handle to a callback list
iptcheckconn Check validity of connectivity argument
iptcheckhandle Check validity of image handle argument
iptcheckinput Check validity of input argument
iptcheckmap Check validity of colormap argument
iptchecknargin Check number of input arguments
iptcheckstrs Check validity of string argument
iptgetapi Get application programmer interface (API) for a handle
iptGetPointerBehavior Retrieve pointer behavior from HG object
ipticondir Return names of directories containing IPT and MATLAB

icons
iptnum2ordinal Convert positive integer to ordinal string
iptPointerManager Install mouse pointer manager in figure
iptremovecallback Delete function handle from callback list
iptSetPointerBehavior Store pointer behavior in HG object
iptwindowalign Align figure windows

Create Angle Measurement Tool

The toolbox includes a set of functions that you can use to enable users of your image
processing GUI to define a region-of-interest (ROI) on the target image. The functions
implement drawing of various shapes of ROI, such as rectangles, ellipses, and polygons,
and returning information about the coordinates that define the ROI. These ROI objects
support methods that you can use to control aspects of its appearance and behavior.
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To illustrate how to use these ROI tools, this example creates a simple angle
measurement tool This custom tool uses impoly to create a two-segment polyline on an
image and displays the angle created by the two line segments in a title in the figure.
Users of the tool can move the polyline anywhere on the image and view the angle
formed by the two line segments.

function my_angle_measurement_tool(im)

% Create figure, setting up properties

figure('Name','My Angle Measurement Tool',...

      'NumberTitle','off',...

      'IntegerHandle','off');

% Display image in the axes

imshow(im)

% Get size of image.

m = size(im,1);

n = size(im,2);

% Get center point of image for initial positioning.

midy = ceil(m/2);

midx = ceil(n/2);

% Position first point vertically above the middle.

firstx = midx;

firsty = midy - ceil(m/4);

lastx = midx + ceil(n/4);

lasty = midy;

% Create a two-segment right-angle polyline centered in the image.

h = impoly(gca,[firstx,firsty;midx,midy;lastx,lasty],'Closed',false);

api = iptgetapi(h);

initial_position = api.getPosition()

% Display initial position

updateAngle(initial_position)

% set up callback to update angle in title.

api.addNewPositionCallback(@updateAngle);

fcn = makeConstrainToRectFcn('impoly',get(gca,'XLim'),get(gca,'YLim'));

api.setPositionConstraintFcn(fcn);

%

% Callback function that calculates the angle and updates the title.

% Function receives an array containing the current x,y position of

% the three vertices.

function updateAngle(p)

% Create two vectors from the vertices.

% v1 = [x1 - x2, y1 - y2]

% v2 = [x3 - x2, Y3 - y2]

v1 = [p(1,1)-p(2,1), p(1,2)-p(2,2)];
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v2 = [p(3,1)-p(2,1), p(3,2)-p(2,2)];

% Find the angle.

theta = acos(dot(v1,v2)/(norm(v1)*norm(v2)));

% Convert it to degrees.

angle_degrees = (theta * (180/pi));

% Display the angle in the title of the figure.

title(sprintf('(%1.0f) degrees',angle_degrees))

To use the angle measurement tool, pass it an image.

I = imread('gantrycrane.png');

my_angle_measurement_tool(I);

The tool opens a figure window, displaying the image with the angle measure tool
centered over the image in a right angle. Move the pointer over any of the vertices of the
tool to measure any angle in the image. In the following figure, the tool is measuring an
angle in the image. Note the size of the angle displayed in the title of the figure.
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6

Geometric Transformations

A geometric transformation (also known as a spatial transformation) modifies the
spatial relationship between pixels in an image, mapping pixel locations in an moving
image to new locations in an output image. The toolbox includes functions that perform
certain specialized geometric transformations, such as resizing and rotating an image.
In addition, the toolbox includes functions that you can use to perform many types of 2-D
and N-D geometric transformations, including custom transformations.

• “Resize an Image” on page 6-2
• “Rotate an Image” on page 6-5
• “Crop an Image” on page 6-6
• “Translate an Image” on page 6-8
• “2-D Geometric Transformations” on page 6-11
• “Perform Simple 2-D Translation Transformation” on page 6-18
• “N-Dimensional Spatial Transformations” on page 6-22
• “Register Two Images Using Spatial Referencing to Enhance Display” on page

6-24
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Resize an Image

In this section...

“Overview” on page 6-2
“Specify the Interpolation Method” on page 6-3
“Prevent Aliasing by Using Filters” on page 6-3

Overview

To resize an image, use the imresize function. When you resize an image, you specify
the image to be resized and the magnification factor. To enlarge an image, specify a
magnification factor greater than 1. To reduce an image, specify a magnification factor
between 0 and 1.

. For example, the command below increases the size of an image by 1.25 times.

I = imread('circuit.tif');

J = imresize(I,1.25);

imshow(I)

figure, imshow(J)

You can specify the size of the output image by passing a vector that contains the number
of rows and columns in the output image. If the specified size does not produce the same
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aspect ratio as the input image, the output image will be distorted. If you specify one of
the elements in the vector as NaN, imresize calculates the value for that dimension to
preserve the aspect ratio of the image.

This example creates an output image with 100 rows and 150 columns.

I = imread('circuit.tif');

J = imresize(I,[100 150]);

imshow(I)

figure, imshow(J)

To perform the resizing required for multiresolution processing, use the impyramid
function.

Specify the Interpolation Method

Interpolation is the process used to estimate an image value at a location in between
image pixels. When imresize enlarges an image, the output image contains more pixels
than the original image. The imresize function uses interpolation to determine the
values for the additional pixels.

Interpolation methods determine the value for an interpolated pixel by finding the point
in the input image that corresponds to a pixel in the output image and then calculating
the value of the output pixel by computing a weighted average of some set of pixels in
the vicinity of the point. The weightings are based on the distance each pixel is from the
point.

By default, imresize uses bicubic interpolation to determine the values of pixels in the
output image, but you can specify other interpolation methods and interpolation kernels.
In the following example, imresize uses the bilinear interpolation method. See the
imresize reference page for a complete list of interpolation methods and interpolation
kernels available. You can also specify your own custom interpolation kernel.

Y = imresize(X,[100 150],'bilinear')

Prevent Aliasing by Using Filters

When you reduce the size of an image, you lose some of the original pixels because there
are fewer pixels in the output image and this can cause aliasing. Aliasing that occurs as
a result of size reduction normally appears as “stair-step“ patterns (especially in high-
contrast images), or as moiré (ripple-effect) patterns in the output image.
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By default, imresize uses antialiasing to limit the impact of aliasing on the output
image for all interpolation types except nearest neighbor. To turn off antialiasing, specify
the 'Antialiasing' parameter and set the value to false.

Note Even with antialiasing, resizing an image can introduce artifacts, because
information is always lost when you reduce the size of an image.

For more information, see the reference page for imresize.
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Rotate an Image

To rotate an image, use the imrotate function. When you rotate an image, you specify
the image to be rotated and the rotation angle, in degrees. If you specify a positive
rotation angle, imrotate rotates the image counterclockwise; if you specify a negative
rotation angle, imrotate rotates the image clockwise.

By default, imrotate creates an output image large enough to include the entire original
image. Pixels that fall outside the boundaries of the original image are set to 0 and
appear as a black background in the output image. You can, however, specify that
the output image be the same size as the input image, using the 'crop' argument.
Similarly, imrotate uses nearest-neighbor interpolation by default to determine the
value of pixels in the output image, but you can specify other interpolation methods. See
the imrotate reference page for a list of supported interpolation methods.

This example rotates an image 35° counterclockwise and specifies bilinear interpolation.

I = imread('circuit.tif');

J = imrotate(I,35,'bilinear');

imshow(I)

figure, imshow(J)
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Crop an Image

Note: You can also crop an image interactively using the Image Tool — see “Crop Image
Using Image Viewer App” on page 4-54.

To extract a rectangular portion of an image, use the imcrop function. Using imcrop,
you can specify the crop region interactively using the mouse or programmatically by
specifying the size and position of the crop region.

This example illustrates an interactive syntax. The example reads an image into the
MATLAB workspace and calls imcrop specifying the image as an argument. imcrop
displays the image in a figure window and waits for you to draw the crop rectangle on
the image. When you move the pointer over the image, the shape of the pointer changes

to cross hairs . Click and drag the pointer to specify the size and position of the crop
rectangle. You can move and adjust the size of the crop rectangle using the mouse. When
you are satisfied with the crop rectangle, double-click to perform the crop operation,
or right-click inside the crop rectangle and select Crop Image from the context menu.
imcrop returns the cropped image in J.

I = imread('circuit.tif')

J = imcrop(I);
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Crop rectangle

Resize
handle

Crop Image tool
context  menu

You can also specify the size and position of the crop rectangle as parameters when you
call imcrop. Specify the crop rectangle as a four-element position vector, [xmin ymin
width height].

In this example, you call imcrop specifying the image to crop, I, and the crop rectangle.
imcrop returns the cropped image in J.

I = imread('circuit.tif');

J = imcrop(I,[60 40 100 90]);
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Translate an Image

This example shows how to perform a translation operation on an image using the
imtranslate function. A translation operation shifts an image by a specified number of
pixels in either the x or y direction, or both.

Read image. The size of the image is 256-by-256 pixels. By default, imshow displays the
image with the corner at 0,0.

I = imread('cameraman.tif');

imshow(I)

Translate the image, shifting the image by 15 pixels in the x direction and 25 pixels
in the y direction. Note that, by default, imtranslate displays the translated image
within the boundaries (or limits) of the original 256-by-256 image. This results in
some of the translated image being clipped. To see the entire translated image, use the
'OutputView' parameter (shown in the following step).

J = imtranslate(I,[15, 25]);
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figure;

imshow(J);

Use the 'OutputView' parameter set to 'full' to adjust the display to show the entire
translated image.

J = imtranslate(I,[15, 25],'OutputView','full');

figure;

imshow(J);
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2-D Geometric Transformations

In this section...

“Define the Geometric Transformation” on page 6-12
“Perform the Geometric Transformation” on page 6-14
“Understand Geometric Transformation” on page 6-15
“Specify Fill Values” on page 6-15

To perform a general 2-D geometric transformation:

1 Define the parameters of the geometric transformation, creating a geometric
transformation object. The toolbox defines several geometric transformation objects
for different types of transformations, such as affine and projective.

2 Perform the transformation. To do this, you pass the image to be transformed and
the geometric transformation object to the imwarp function.

The following figure illustrates this process.
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Define the Geometric Transformation

Before you can perform a geometric transformation, you must first define the parameters
of the transformation in a geometric transformation object. The following sections
describe two ways you can do this:

• “Using a Transformation Matrix” on page 6-12
• “Using Sets of Points” on page 6-14

Using a Transformation Matrix

If you know the transformation matrix for the geometric transformation you want to
perform, you can create one of the geometric transformation objects directly, passing the
transformation matrix as a parameter.
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For example, you can use a 3-by-3 matrix to specify any of the affine transformations.
For affine transformations, the last column must contain 0 0 1 ([zeros(N,1); 1]). The
following table lists affine transformations with the transformation matrix used to define
them. You can combine multiple affine transformations into a single matrix.

Affine Transform Example Transformation Matrix

Translation tx specifies the
displacement along the x
axis

ty specifies the
displacement along the y
axis.

Scale sx specifies the scale factor
along the x axis

sy specifies the scale factor
along the y axis.

Shear shx specifies the shear
factor along the x axis

shy specifies the shear
factor along the y axis.

Rotation q specifies the angle of
rotation.

The following example defines the transformation matrix for a translation and creates an
affine2d geometric transformation object.

xform = [ 1 0 0

          0 1 0

         40 40 1 ];

tform_translate = affine2d(xform);

tform_translate = 
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  affine2d with properties:

                 T: [3x3 double]

    Dimensionality: 2

Using Sets of Points

You can create a geometric transformation object by passing two sets of control
point pairs to the fitgeotrans function. The fitgeotrans function estimates the
transformation from these points and returns one of the geometric transformation
objects.

Different transformations require a varying number of points. For example, affine
transformations require three non-collinear points in each image (a triangle) and
projective transformations require four points (a quadrilateral).

This example passes two sets of control points to fitgeotrans, which returns an affine
geometric transformation object.

movingPoints = [11 11;21 11; 21 21];

fixedPoints = [51 51;61 51;61 61];

tform = fitgeotrans(movingPoints,fixedPoints,'affine')

tform = 

  affine2d with properties:

                 T: [3x3 double]

    Dimensionality: 2

Perform the Geometric Transformation

Once you specify the transformation in a geometric transformation object, you can
perform the transformation by calling the imwarp function, passing it the image to be
transformed and a geometric transformation object. The imwarp function performs the
specified transformation on the coordinates of the input image and creates an output
image.

For example, to perform a transformation of the checkerboard image using the geometric
transformation object created in “Define the Geometric Transformation” on page 6-12,
you would call imwarp this way:
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cb_trans = imwarp(cb, tform_translate);

Understand Geometric Transformation

imwarp determines the value of pixels in the output image by mapping the new locations
back to the corresponding locations in the input image (inverse mapping). imwarp
interpolates within the input image to compute the output pixel value. See imwarp for
more information about supported interpolation methods.

The following figure illustrates a translation transformation. By convention, the axes
in input space are labeled u and v and the axes in output space are labelled x and y. In
the figure, note how imwarp modifies the spatial coordinates that define the locations
of pixels in the input image. The pixel at (1,1) is now positioned at (41,41). In the
checkerboard image, each black, white, and gray square is 10 pixels high and 10 pixels
wide. (For more information about the distinction between spatial coordinates and pixel
coordinates, see “Expressing Image Locations” on page 2-3. )

Input Image Translated

Specify Fill Values

When you perform a transformation, there are often pixels in the output image that are
not part of the original input image. These pixels must be assigned some value, called a
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fill value. By default, imwarp sets these pixels to zero and they are displayed as black.
Using the FillValues parameter with the imwarp function, you can specify a different
color.

If the image being transformed is a grayscale image, you must specify a scalar value that
specifies a shade of gray. For example, if you are translating the checkerboard image, you
can specify a fill value that matches the color of the gray squares, rather than the default
black color.

cb_fill = imwarp(cb, tform_translate,'FillValues', .7 );

figure, imshow(cb_fill)

Translated Image with Gray Fill Value

If the image being transformed is an RGB image, you can use either a scalar value or a 1-
by-3 vector. If you specify a scalar, imwarp uses that shade of gray for each plane of the
RGB image. If you specify a 1-by-3 vector, imwarp interprets the values as an RGB color
value.

For example, this code translates an RGB image, specifying an RGB color value as the fill
value. The example specifies one of the light green values in the image as the fill value.

rgb = imread('onion.png');

xform = [ 1 0 0

          0 1 0

         40 40 1 ]

tform_translate = affine2d(xform);

cb_rgb = imwarp(rgb,tform_translate,'FillValues',[187;192;57]);

figure, imshow(cb_rgb)
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Translated RGB Image with Color Fill Value

If you are transforming multiple RGB images, you can specify different fill values for
each RGB image. For example, if you want to transform a series of 10 RGB images, a 4-D
array with dimensions 200-by-200-by-3-by-10, you can specify a 3-by-10 array containing
RGB color values for each plane.
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Perform Simple 2-D Translation Transformation

This example shows how to perform a simple affine transformation called a translation.
In a translation, you shift an image in coordinate space by adding a specified value
to the x- and y coordinates. (You can also use the imtranslate function to perform
translation.)

Read the image to be transformed. This example creates a checkerboard image using the
checkerboard function.

cb = checkerboard;

imshow(cb)

Get spatial referencing information about the image. This information is useful when you
want to display the result of the transformation.
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Rcb = imref2d(size(cb))

Rcb = 

  imref2d with properties:

           XWorldLimits: [0.5000 80.5000]

           YWorldLimits: [0.5000 80.5000]

              ImageSize: [80 80]

    PixelExtentInWorldX: 1

    PixelExtentInWorldY: 1

    ImageExtentInWorldX: 80

    ImageExtentInWorldY: 80

       XIntrinsicLimits: [0.5000 80.5000]

       YIntrinsicLimits: [0.5000 80.5000]

Create a geometric transformation object that defines the translation you want to
perform. A translation transformation is a type of 2-D affine transformation so it uses the
affine2d geometric transformation object. You can use a 3-by-3 transformation matrix
to define the transformation. In this matrix, A(3,1) specifies the number of pixels to shift
the image in the horizontal direction and A(3,2) specifies the number of pixels to shift the
image in the vertical direction. Now create a geometric transformation object using the
transformation matrix.

tform = affine2d([1 0 0; 0 1 0; 20 20 1]);

Perform the transformation. Call the imwarp function specifying the image you
want to transform and the geometric transformation object. imwarp returns the
transformed image. This example gets the optional spatial referencing object return
value which contains information about the transformed image. View the original and
the transformed image side-by-side using the subplot function in conjunction with
imshow . When viewing the translated image, it might appear that the transformation
had no effect. The transformed image looks identical to the original image. The reason
that no change is apparent in the visualization is because imwarp sizes the output image
to be just large enough to contain the entire transformed image but not the entire output
coordinate space. Notice, however, that the coordinate values have been changed by the
transformation.

[out,Rout] = imwarp(cb,tform);

figure;

subplot(1,2,1);
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imshow(cb,Rcb);

subplot(1,2,2);

imshow(out,Rout)

To see the entirety of the transformed image in the same relation to the origin of the
coordinate space as the original image, use imwarp with the 'OutputView' parameter,
specifying a spatial referencing object. The spatial referencing object specifies the size of
the output image and how much of the output coordinate space is included in the output
image. To do this, the example makes a copy of the spatial referencing object associated
with the original image and modifies the world coordinate limits to accommodate the full
size of the transformed image. The example sets the limits of the output image in world
coordinates to include the origin from the input

Rout = Rcb;



 Perform Simple 2-D Translation Transformation

6-21

Rout.XWorldLimits(2) = Rout.XWorldLimits(2)+20;

Rout.YWorldLimits(2) = Rout.YWorldLimits(2)+20;

[out,Rout] = imwarp(cb,tform,'OutputView',Rout);

figure, subplot(1,2,1);

imshow(cb,Rcb);

subplot(1,2,2);

imshow(out,Rout)
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N-Dimensional Spatial Transformations

The following functions, when used in combination, provide a vast array of options for
defining and working with 2-D, N-D, and mixed-D spatial transformations:

• maketform

• fliptform

• tformfwd

• tforminv

• findbounds

• makeresampler

• tformarray

• imtransform

The imtransform, findbounds, and tformarray functions use the tformfwd and
tforminv functions internally to encapsulate the forward transformations needed to
determine the extent of an output image or array and/or to map the output pixels/array
locations back to input locations. You can use tformfwd and tforminv to explore the
geometric effects of a transformation by applying them to points and lines and plotting
the results. They support a consistent handling of both image and pointwise data.

The following example, “Perform the Geometric Transformation” on page 6-14, uses the
makeresampler function with a standard interpolation method. You can also use it
to obtain special effects or custom processing. For example, you could specify your own
separable filtering/interpolation kernel, build a custom resampler around the MATLAB
interp2 or interp3 functions, or even implement an advanced antialiasing technique.

And, as noted, you can use tformarray to work with arbitrary-dimensional array
transformations. The arrays do not even need to have the same dimensions. The output
can have either a lower or higher number of dimensions than the input.

For example, if you are sampling 3-D data on a 2-D slice or manifold, the input array
might have a lower dimensionality. The output dimensionality might be higher, for
example, if you combine multiple 2-D transformations into a single 2-D to 3-D operation.

For example, this code uses imtransform to perform a projective transformation of a
checkerboard image.

I = checkerboard(20,1,1);
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figure; imshow(I)

T = maketform('projective',[1 1; 41 1; 41 41;   1 41],...

              [5 5; 40 5; 35 30; -10 30]);

R = makeresampler('cubic','circular');

K = imtransform(I,T,R,'Size',[100 100],'XYScale',1);

figure, imshow(K)

The imtransform function options let you control many aspects of the transformation.
For example, note how the transformed image appears to contain multiple copies of the
original image. This is accomplished by using the 'Size' option, to make the output
image larger than the input image, and then specifying a padding method that extends
the input image by repeating the pixels in a circular pattern. The Image Processing
Toolbox Image Transformation demos provide more examples of using the imtransform
function and related functions to perform different types of spatial transformations.
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Register Two Images Using Spatial Referencing to Enhance Display

This example shows how to use spatial referencing objects to understand the spatial
relationship between two images in image registration and display them effectively. This
example brings one of the images, called the moving image, into alignment with the
other image, called the fixed image.

Read the two images of the same scene that are slightly misaligned.

fixed = imread('westconcordorthophoto.png');

moving = imread('westconcordaerial.png');

Display the moving (unregistered) image.

iptsetpref('ImshowAxesVisible','on')

imshow(moving)

text(size(moving,2),size(moving,1)+30, ...

    'Image courtesy of mPower3/Emerge', ...

    'FontSize',7,'HorizontalAlignment','right');
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Load a MAT-file that contains preselected control points for the fixed and moving
images and create a geometric transformation fit to the control points, using
fitgeotrans .

load westconcordpoints

tform = fitgeotrans(movingPoints, fixedPoints, 'projective');
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Perform the transformation necessary to register the moving image with the fixed
image, using imwarp . This example uses the optional 'FillValues' parameter to
specify a fill value (white), which will help when displaying the fixed image over the
transformed moving image, to check registration. Notice that the full content of the
geometrically transformed moving image is present, now called registered . Also note
that there are no blank rows or columns.

registered = imwarp(moving, tform,'FillValues', 255);

figure, imshow(registered);
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Overlay the transformed image, registered , over the fixed image, using imshowpair
. Notice how the two images appear misregistered. This happens because imshowpair
assumes that the images are both in the default intrinsic coordinate system. The next
steps provide two ways to remedy this display problem.

figure, imshowpair(fixed,registered,'blend');

Constrain the transformed image, registered , to the same number of rows and
columns, and the same spatial limits as the fixed image. This ensures that the
registered image appears registered with the fixed image but areas of the registered
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image that would extrapolate beyond the extent of the fixed image are discarded. To
do this, create a default spatial referencing object that specifies the size and location of
the fixed image, and use imwarp's 'OutputView' parameter to create a constrained
resampled image registered1. Display the registered image over the fixed image. In
this view, the images appear to have been registered, but not all of the unregistered
image is visible.

Rfixed = imref2d(size(fixed));

registered1 = imwarp(moving,tform,'FillValues', 255,'OutputView',Rfixed);

figure, imshowpair(fixed,registered1,'blend');
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As an alternative, use the optional imwarp syntax that returns the output spatial
referencing object that indicates the position of the full transformed image in the same
default intrinsic coordinate system as the fixed image. Display the registered image
over the fixed image and note that now the full registered image is visible.

[registered2, Rregistered] = imwarp(moving, tform,'FillValues', 255);

figure, imshowpair(fixed,Rfixed,registered2,Rregistered,'blend');
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Image Registration

This chapter describes the image registration capabilities of the Image Processing
Toolbox software. Image registration is the process of aligning two or more images of
the same scene. Image registration is often used as a preliminary step in other image
processing applications.

• “Image Registration Techniques” on page 7-2
• “Control Point Registration” on page 7-3
• “Using cpselect in a Script” on page 7-5
• “Register an Aerial Photograph to a Digital Orthophoto” on page 7-6
• “Geometric Transformation Types” on page 7-11
• “Control Point Selection Procedure” on page 7-12
• “Start the Control Point Selection Tool” on page 7-14
• “Find Visual Elements Common to Both Images” on page 7-16
• “Select Matching Control Point Pairs” on page 7-20
• “Export Control Points to the Workspace” on page 7-27
• “Save Control Point Selection Session” on page 7-28
• “Use Cross-Correlation to Improve Control Point Placement” on page 7-29
• “Use Phase Correlation as Preprocessing Step in Registration” on page 7-30
• “Intensity-Based Automatic Image Registration” on page 7-36
• “Registering Multimodal MRI Images” on page 7-39
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Image Registration Techniques

Image registration is the process of aligning two or more images of the same scene.
This process involves designating one image as the reference (also called the reference
image or the fixed image), and applying geometric transformations to the other images
so that they align with the reference. Images can be misaligned for a variety of reasons.
Commonly, the images are captured under variable conditions that can change camera
perspective. Misalignment can also be the result of lens and sensor distortions or
differences between capture devices.

A geometric transformation maps locations in one image to new locations in another
image. The step of determining the correct geometric transformation parameters is key to
the image registration process.

Image registration is often used as a preliminary step in other image processing
applications. For example, you can use image registration to align satellite images or to
align medical images captured with different diagnostic modalities (MRI and SPECT).
Image registration allows you to compare common features in different images. For
example, you might discover how a river has migrated, how an area became flooded, or
whether a tumor is visible in an MRI or SPECT image.

Together, the Image Processing Toolbox and Computer Vision System Toolbox™ offer
three image registration solutions:

• “Intensity-Based Automatic Image Registration” on page 7-36 maps certain pixels
in each image to the same location based on relative intensity patterns. This approach
is best suited for workflows that involve a large collection of images or when you
require an automated workflow. This functionality resides in the Image Processing
Toolbox.

• “Control Point Registration” on page 7-3 allows you to manually select common
features in each image to map to the same pixel location. This method of registration
is best suited for images that have distinct features. It resides in the Image
Processing Toolbox.

• An automated feature-based workflow automatically aligns images by selecting
matching features between two images. This workflow includes feature detection,
extraction, and matching, followed by transform estimation. Features can be
corners or blobs and the distortion can include rotation and scale changes. For more
information, see Finding Rotation and Scale of an Image Using Automated Feature
Matching. You must have the Computer Vision System Toolbox installed to use this
method.

examples/find-image-rotation-and-scale-using-automated-feature-matching.html
examples/find-image-rotation-and-scale-using-automated-feature-matching.html
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Control Point Registration

The Image Processing Toolbox software provides tools to support point mapping to
determine the parameters of the transformation required to bring an image into
alignment with another image. In point mapping, you pick points in a pair of images
that identify the same feature or landmark in the images. Then, a geometric mapping is
inferred from the positions of these control points.

Note You might need to perform several iterations of this process, experimenting with
different types of transformations, before you achieve a satisfactory result. In some cases,
you might perform successive registrations, removing gross global distortions first, and
then removing smaller local distortions in subsequent passes.

The following figure provides a graphic illustration of this process. This process is best
understood by looking at an example. See “Register an Aerial Photograph to a Digital
Orthophoto” on page 7-6 for an extended example.
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Using cpselect in a Script

If you need to perform the same kind of registration for many images, you can automate
the process by putting all the steps in a script. For example, you could create a script that
launches the Control Point Selection Tool with the images to be registered. The script
could then use the control points selected to create a geometric transformation object and
pass this object and the image to be registered to the imwarp function, outputting the
registered image.

When calling cpselect in a script, specify the 'Wait' option. The 'Wait' option
causescpselect to block the MATLAB command line until control points have been
selected and returned. If you do not use the 'Wait' option, cpselect returns control
immediately and your script will continue without allowing time for control point
selection. In addition, without the 'Wait' option, cpselect does not return the control
points as return values. For an example, see the cpselect reference page.
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Register an Aerial Photograph to a Digital Orthophoto

This example shows how to use point mapping to perform image registration.

Read the sample images and display them.

orthophoto = imread('westconcordorthophoto.png');

figure, imshow(orthophoto)

unregistered = imread('westconcordaerial.png');

figure, imshow(unregistered)

In this example, the fixed image is westconcordorthophoto.png, the MassGIS
georegistered orthophoto. It is a panchromatic (grayscale) image, supplied by the
Massachusetts Geographic Information System (MassGIS), that has been orthorectified
to remove camera, perspective, and relief distortions (via a specialized image
transformation process). The orthophoto is also georegistered (and geocoded) —
the columns and rows of the digital orthophoto image are aligned to the axes of the
Massachusetts State Plane coordinate system. In the orthophoto, each pixel center
corresponds to a definite geographic location, and every pixel is 1 meter square in map
units.
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The image to be registered is westconcordaerial.png, a digital aerial photograph
supplied by mPower3/Emerge, and is a visible-color RGB image. The aerial image is
geometrically uncorrected: it includes camera perspective, terrain and building relief,
internal (lens) distortions, and it does not have any particular alignment or registration
with respect to the earth.

The example reads both images into the MATLAB workspace but the cpselect function
accepts file specifications for grayscale images. However, if you want to use cross-
correlation to tune your control point positioning, the images must be in the workspace.

Select pairs of corresponding control points in both images, using the Control Point
Selection tool. Control points are landmarks that you can find in both images, like a
road intersection, or a natural feature. To start this tool, enter cpselect, specifying as
arguments the moving and fixed images.

cpselect(unregistered, orthophoto)
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Save the control point pairs to the MATLAB workspace. In the Control Point Selection
Tool, click the File menu and choose the Export Points to Workspace option.

For example, the following set of control points in the moving image represent spatial
coordinates; the left column lists x-coordinates, the right column lists y-coordinates.
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moving_points =

  118.0000   96.0000

  304.0000   87.0000

  358.0000  281.0000

  127.0000  292.0000

You can optionally fine-tune the control point pair placement, using the cpcorr function.

This is an optional step that uses cross-correlation to adjust the position of the control
points you selected with cpselect. To use cross-correlation, features in the two images
must be at the same scale and have the same orientation. They cannot be rotated relative
to each other. Because the Concord image is rotated in relation to the fixed image,
cpcorr cannot tune the control points.

Specify the type of transformation and infer its parameters, using fitgeotrans.
fitgeotrans is a data-fitting function that determines the transformation needed to
bring the image into alignment, based on the geometric relationship of the control points.
fitgeotrans returns the parameters in a geometric transformation object.

mytform = fitgeotrans(movingPoints, fixedPoints, 'projective');

mytform = 

  projective2d with properties:

                 T: [3x3 double]

    Dimensionality: 2

When you use fitgeotrans, you must specify the type of transformation you want
to perform. The fitgeotrans function can infer the parameters for several types
of transformations. You must choose which transformation will correct the type of
distortion present in the moving image. Images can contain more than one type of
distortion.

The predominant distortion in the aerial image of West Concord (the moving image)
results from the camera perspective. Ignoring terrain relief, which is minor in this area,
image registration can correct for camera perspective distortion by using a projective
transformation. The projective transformation also rotates the image into alignment with
the map coordinate system underlying the fixed digital orthophoto image.

Transform the moving image (unregistered) to bring it into alignment with the fixed
image. You use imwarp to perform the transformation, passing it the moving image and
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the geometric transformation object returned by fitgeotrans. imwarp returns the
transformed image.

registered = imwarp(unregistered, mytform);

The following figure shows the transformed image transparently overlaid on the fixed
image to show the results of the registration.
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Geometric Transformation Types

The Image Processing Toolbox provides functionality for applying geometric
transformations to register images.

For control point registration, the fitgeotrans function can infer the parameters for
the following types of transformations, listed in order of complexity.

• 'nonreflective similarity'

• 'affine'

• 'projective'

• 'polynomial' (Order 2, 3, or 4)
• 'piecewise linear'

• 'lwm'

The first four transformations, 'nonreflective similarity', 'affine',
'projective', and 'polynomial' are global transformations. In these
transformations, a single mathematical expression applies to an entire image. The last
two transformations, 'piecewise linear' and 'lwm' (local weighted mean), are local
transformations. In these transformations, different mathematical expressions apply
to different regions within an image. When exploring how different transformations
affect the images you are working with, try the global transformations first. If these
transformations are not satisfactory, try the local transformations: the piecewise linear
transformation first, and then the local weighted mean transformation.

Your choice of transformation type affects the number of control point pairs you need
to select. For example, a nonreflective similarity transformation requires at least two
control point pairs. A polynomial transformation of order 4 requires 15 control point
pairs. For more information about these transformation types, and the special syntaxes
they require, see cpselect.

For information about the specific transformation types available for intensity-based
automatic image registration, see the imregister function reference page.
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Control Point Selection Procedure

To specify control points in a pair of images you want to register, use the Control Point
Selection Tool, cpselect. The tool displays the image you want to register, called the
moving image, next to the image you want to compare it to, called the fixed image.

Specifying control points is a four-step process:

1 Start the tool, specifying the moving image and the fixed image.
2 Use navigation aids to explore the image, looking for visual elements that you can

identify in both images. cpselect provides many ways to navigate around the
image, panning and zooming to view areas of the image in more detail.

3 Specify matching control point pairs in the moving image and the fixed image.
4 Save the control points in the MATLAB workspace.

The following figure shows the default appearance of the tool when you first start it.
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Start the Control Point Selection Tool

To use the Control Point Selection Tool, enter the cpselect command at the MATLAB
prompt. As arguments, specify the image you want to register (the moving image) and
the image you want to compare it to (the fixed image).

For simplicity, this section uses the same image as the moving and the fixed image. To
walk through an example of an actual registration, see “Register an Aerial Photograph to
a Digital Orthophoto” on page 7-6.

moon_fixed = imread('moon.tif');

moon_moving = moon_fixed; 

cpselect(moon_moving, moon_fixed);

The cpselect command has other optional arguments. For example, you can restart a
control point selection session by including a cpstruct structure as the third argument.
For more information about restarting sessions, see “Export Control Points to the
Workspace” on page 7-27. For complete details, see the cpselect reference page.

When the Control Point Selection Tool starts, it contains three primary components:

• Details windows—The two windows displayed at the top of the tool are called the
Detail windows. These windows show a close-up view of a portion of the images you
are working with. The moving image is on the left and the fixed image is on the right.

• Overview windows—The two windows displayed at the bottom of the tool are called
the Overview windows. These windows show the images in their entirety, at the
largest scale that fits the window. The moving image is on the left and the fixed image
is on the right. You can control whether the Overview window appears by using the
View menu.

• Details rectangle—Superimposed on the images displayed in the two Overview
windows is a rectangle, called the Detail rectangle. This rectangle controls the part
of the image that is visible in the Detail window. By default, at startup, the detail
rectangle covers one quarter of the entire image and is positioned over the center
of the image. You can move the Detail rectangle to change the portion of the image
displayed in the Detail windows.

The following figure shows these components of the Control Point Selection Tool.
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Find Visual Elements Common to Both Images

To find visual elements that are common to both images, you might want to change the
section of the image displayed in the detail view or zoom in on a part of the image to view
it in more detail. The following sections describe the different ways to change your view
of the images:

In this section...

“Using Scroll Bars to View Other Parts of an Image” on page 7-16
“Using the Detail Rectangle to Change the View” on page 7-16
“Panning the Image Displayed in the Detail Window” on page 7-17
“Zooming In and Out on an Image” on page 7-17
“Specifying the Magnification of the Images” on page 7-18
“Locking the Relative Magnification of the Moving and Fixed Images” on page 7-19

Using Scroll Bars to View Other Parts of an Image

To view parts of an image that are not visible in the Detail or Overview windows, use the
scroll bars provided for each window.

As you scroll the image in the Detail window, note how the Detail rectangle moves over
the image in the Overview window. The position of the Detail rectangle always shows the
portion of the image in the Detail window.

Using the Detail Rectangle to Change the View

To get a closer view of any part of the image, move the Detail rectangle in the Overview
window over that section of the image. cpselect displays that section of the image in
the Detail window at a higher magnification than the Overview window.

To move the detail rectangle,

1 Move the pointer into the Detail rectangle. The cursor changes to the fleur shape,

.
2 Press and hold the mouse button to drag the detail rectangle anywhere on the image.
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Note As you move the Detail rectangle over the image in the Overview window, the view
of the image displayed in the Detail window changes.

Panning the Image Displayed in the Detail Window

To change the section of the image displayed in the Detail window, use the pan tool to
move the image in the window.

To use the pan tool,

1 Click the Pan button  in the Control Point Selection Tool toolbar or select Pan
from the Tools menu.

2 Move the pointer over the image in the Detail window. The cursor changes to the

hand shape, .
3 Press and hold the mouse button. The cursor changes to a closed fist shape, . Use

the mouse to move the image in the Detail window.

Note As you move the image in the Detail window, the Detail rectangle in the Overview
window moves.

Zooming In and Out on an Image

To enlarge an image to get a closer look or shrink an image to see the whole image in
context, you can zoom in or zoom out on the images displayed. (You can also zoom in or
out on an image by changing the magnification. See “Specifying the Magnification of the
Images” on page 7-18 for more information.)

To zoom in or zoom out on the fixed or moving images,

1 Click the appropriate magnifying glass button on the Control Point Selection Tool
toolbar or select Zoom In or Zoom Out from the Tools menu.

Zoom in Zoom out
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2 Move the pointer over the image in the Detail window that you want to zoom in
or out on. The cursor changes to the appropriate magnifying glass shape, such as

. Position the cursor over a location in the image and click the mouse. With
each click, cpselect changes the magnification of the image by a preset amount.
(See“Specifying the Magnification of the Images” on page 7-18 for a list of some
of these magnifications.) cpselect centers the new view of the image on the spot
where you clicked.

Another way to use the Zoom tool to zoom in on an image is to position the cursor
over a location in the image and, while pressing and holding the mouse button,
draw a rectangle defining the area you want to zoom in on. cpselect magnifies the
image so that the chosen section fills the Detail window. cpselect resizes the detail
rectangle in the Overview window as well.

The size of the Detail rectangle in the Overview window changes as you zoom in or
out on the image in the Detail window.

To keep the relative magnifications of the fixed and moving images synchronized
as you zoom in or out, click the Lock ratio check box. See “Locking the Relative
Magnification of the Moving and Fixed Images” on page 7-19 for more
information.

Specifying the Magnification of the Images

To enlarge an image to get a closer look or to shrink an image to see the whole image in
context, use the magnification edit box. (You can also use the Zoom buttons to enlarge
or shrink an image. See “Zooming In and Out on an Image” on page 7-17 for more
information.)

To change the magnification of an image,

1 Move the cursor into the magnification edit box of the window you want to change.
The cursor changes to the text entry cursor.

2 Type a new value in the magnification edit box and press Enter, or click the
menu associated with the edit box and choose from a list of preset magnifications.
cpselect changes the magnification of the image and displays the new view in the
appropriate window. To keep the relative magnifications of the fixed and moving
images synchronized as you change the magnification, click the Lock ratio check
box. See “Locking the Relative Magnification of the Moving and Fixed Images” on
page 7-19 for more information.
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Locking the Relative Magnification of the Moving and Fixed Images

To keep the relative magnification of the moving and fixed images automatically
synchronized in the Detail windows, click the Lock Ratio check box.

When the Lock Ratio check box is selected, cpselect changes the magnification of
both the moving and fixed images when you zoom in or out on either one of the images or
specify a magnification value for either of the images.

Lock magnification ratio check box
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Select Matching Control Point Pairs

The primary function of the Control Point Selection Tool is to enable you to pick control
points in the image to be registered (the moving image) and the image to which you are
comparing it (the fixed image). When you start cpselect, point selection is enabled, by
default.

You specify control points by pointing and clicking in the moving and fixed images, in
either the Detail or the Overview windows. Each point you specify in the moving image
must have a match in the fixed image. The following sections describe the ways you can
use the Control Point Selection Tool to choose control point pairs:

In this section...

“Picking Control Point Pairs Manually” on page 7-20
“Using Control Point Prediction” on page 7-22
“Moving Control Points” on page 7-25
“Deleting Control Points” on page 7-26

Picking Control Point Pairs Manually

To specify a pair of control points in your images,

1 Click the Control Point Selection button  in the Control Point Selection Tool
toolbar or select Add Points from the Tools menu. (Control point selection mode is

active by default.) The cursor changes to a crosshairs shape 
2 Position the cursor over a feature you have visually selected in any of the images

displayed and click the mouse button. cpselect places a control point symbol,

, at the position you specified, in both the Detail window and the corresponding
Overview window. cpselect numbers the points as you select them. The
appearance of the control point symbol indicates its current state. The circle around
the point indicates that it is the currently selected point. The number identifies
control point pairs.

Note Depending on where in the image you pick control points, the symbol for the
point might be visible in the Overview window, but not in the Detail window.
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3 You can select another point in the same image or you can move to the corresponding
image and create a match for the point. To create the match for this control point,
position the cursor over the same feature in the corresponding Detail or Overview
window and click the mouse button. cpselect places a control point symbol at the
position you specified, in both the Detail and Overview windows. You can work in
either direction: picking control points in either of the Detail windows, moving or
fixed, or in either of the Overview windows, moving or fixed.

To match an unmatched control point, select it, and then pick a point in the
corresponding window. You can move or delete control points after you create them.

The following figure illustrates control points in several states.
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Using Control Point Prediction

Instead of picking matching control points yourself, you can let the Control Point
Selection Tool estimate the match for the control points you specify, automatically. The
Control Point Selection Tool determines the position of the matching control point based
on the geometric relationship of the previously selected control points, not on any feature
of the underlying images.
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To illustrate point prediction, this figure shows four control points selected in the moving
image, where the points form the four corners of a square. (The control point selections in
the figure do not attempt to identify any landmarks in the image.) The figure shows the
picking of a fourth point, in the left window, and the corresponding predicted point in the
right window. Note how the Control Point Selection Tool places the predicted point at the
same location relative to the other control points, forming the bottom right corner of the
square.
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Note By default, the Control Point Selection Tool does not include predicted points in
the set of valid control points returned in movingPoints or fixedPoints. To include
predicted points, you must accept them by selecting the points and fine-tuning their
position with the cursor. When you move a predicted point, the Control Point Selection
Tool changes the symbol to indicate that it has changed to a standard control point. For
more information, see “Moving Control Points” on page 7-25.

To use control point prediction,

1 Click the Control Point Prediction button .

Note: Because the Control Point Selection Tool predicts control point locations based
on the locations of the previous control points, you cannot use point prediction until
you have a minimum of two pairs of matched points. Until this minimum is met, the
Control Point Prediction button is disabled.

2 Position the cursor anywhere in any of the images displayed. The cursor changes to

the crosshairs shape, .

You can pick control points in either of the Detail windows, moving or fixed, or
in either of the Overview windows, moving or fixed. You also can work in either
direction: moving-to-fixed image or fixed-to-moving image.

3 Click either mouse button. The Control Point Selection Tool places a control point
symbol at the position you specified and places another control point symbol for a
matching point in all the other windows. The symbol for the predicted point contains

the letter P, indicating that it's a predicted control point,
4 To accept a predicted point, select it with the cursor and move it. The Control Point

Selection Tool removes the P from the point.

Moving Control Points

To move a control point,

1 Click the Control Point Selection button  .
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2 Position the cursor over the control point you want to move. The cursor changes to

the fleur shape, 
3 Press and hold the mouse button and drag the control point. The state of the control

point changes to selected when you move it.

If you move a predicted control point, the state of the control point changes to a regular
(nonpredicted) control point.

Deleting Control Points

To delete a control point, and its matching point, if one exists

1 Click the Control Point Selection button .
2 Click the control point you want to delete. Its state changes to selected. If the control

point has a match, both points become active.
3 Delete the point (or points) using one of these methods:

• Pressing the Backspace key
• Pressing the Delete key
• Choosing one of the delete options from the Edit menu

Using this menu you can delete individual points or pairs of matched points, in
the moving or fixed images.
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Export Control Points to the Workspace

After you specify control point pairs, you must save them in the MATLAB workspace
to make them available for the next step in image registration, processing by
fitgeotrans.

To save control points to the MATLAB workspace,

1 Select File on the Control Point Selection Tool menu bar.
2 Choose the Export Points to Workspace option. The Control Point Selection Tool

displays this dialog box:

By default, the Control Point Selection Tool saves the x-coordinates and y-coordinates
that specify the locations of the control points you selected in two arrays named
movingPoints and fixedPoints, although you can specify other names. These are n-
by-2 arrays, where n is the number of valid control point pairs you selected. This example
shows the movingPoints array containing four pairs of control points. The values in the
left column represent the x-coordinates; the values in the right column represent the y-
coordinates.

movingPoints =

  215.6667  262.3333

  225.7778  311.3333

  156.5556  340.1111

  270.8889  368.8889

Whenever you exit the Control Point Selection Tool, it asks if you want to save your
control points.
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Save Control Point Selection Session

To save the current state of the Control Point Selection Tool, choose the Export Points
to Workspace option from the File menu. In the Export Points to Workspace dialog
box, select the Structure with all points check box.

This option saves the positions of all the control points you specified and their current
states in a cpstruct structure.

cpstruct = 

         inputPoints: [2x2 double]

          basePoints: [2x2 double]

      inputBasePairs: [2x2 double]

                 ids: [2x1 double]

        inputIdPairs: [2x2 double]

         baseIdPairs: [2x2 double]

    isInputPredicted: [2x1 double]

     isBasePredicted: [2x1 double]

You can use the cpstruct to restart a control point selection session at the point where
you left off.

This option is useful if you are picking many points over a long time and want to preserve
unmatched and predicted points when you resume work. The Control Point Selection
Tool does not include unmatched and predicted points in the movingPoints and
fixedPoints arrays.

To extract the arrays of valid control point coordinates from a cpstruct, use the
cpstruct2pairs function.
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Use Cross-Correlation to Improve Control Point Placement

You might want to fine-tune the control points you selected using cpselect. Using
cross-correlation, you can sometimes improve the points you selected by eye using the
Control Point Selection Tool.

To use cross-correlation, pass sets of control points in the moving and fixed images, along
with the images themselves, to the cpcorr function.

moving_pts_adj= cpcorr(movingPoints, fixedPoints, moving, fixed);

The cpcorr function defines 11-by-11 regions around each control point in the moving
image and around the matching control point in the fixed image, and then calculates the
correlation between the values at each pixel in the region. Next, the cpcorr function
looks for the position with the highest correlation value and uses this as the optimal
position of the control point. The cpcorr function only moves control points up to 4
pixels based on the results of the cross-correlation.

Note Features in the two images must be at the same scale and have the same
orientation. They cannot be rotated relative to each other.

If cpcorr cannot correlate some of the control points, it returns their values in
movingPoints unmodified.
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Use Phase Correlation as Preprocessing Step in Registration

This example shows how to use phase correlation as a preliminary step for automatic
image registration. In this process, you perform phase correlation, using imregcorr ,
and then pass the result of that registration as the initial condition of an optimization-
based registration, using imregister . Phase correlation and optimization-based
registration are complementary algorithms. Phase correlation is good for finding gross
alignment, even for severely misaligned images. Optimization-based registration is good
for finding precise alignment, given a good initial conditions.

Read image that will be reference image in the registration.

fixed  = imread('cameraman.tif');

imshow(fixed);
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Create an unregistered image by deliberately distorting this image using rotation, scale,
and shear. Display the image.

theta = 170;

S = 2.3;

ShearY = 1.3;

tform = affine2d([S.*cosd(theta) -S.*ShearY*sind(theta) 0; S.*sind(theta) S.*cosd(theta) 0; 0 0 1]);

moving = imwarp(fixed,tform);

moving = moving + uint8(10*rand(size(moving)));

figure, imshow(moving)



7 Image Registration

7-32

Estimate the registration required to bring these two images into alignment. imregcorr
returns an affine2d object that defines the transformation.

tformEstimate = imregcorr(moving,fixed);

Apply the estimated geometric transform to the misaligned image. Specify
'OutputView' to make sure the registered image is the same size as the reference
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image. Display the original image and the registered image side-by-side. You can see that
imregcorr has done a good job handling the rotation and scaling differences between
the images. The registered image, movingReg , is very close to aligned with the original
image, fixed . But there is some misalignment left. imregcorr can handle rotation and
scale well, but not shear distortion.

Rfixed = imref2d(size(fixed));

movingReg = imwarp(moving,tformEstimate,'OutputView',Rfixed);

figure, imshowpair(fixed,movingReg,'montage');

View the aligned image overlaid on the original image, using imshowpair. In this view,
imshowpair uses color to highlight areas of misalignment that remain.

figure, imshowpair(fixed,movingReg,'falsecolor');
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To finish the registration, use imregister , passing the estimated transformation
returned by imregcorr as the initial condition. imregister is more effective if the
two images are roughly in alignment at the start of the operation. The transformation
estimated by imregcorr provides this information for imregister . The example uses
the default optimizer and metric values for a registration of two images taken with the
same sensor ( 'monomodal' ).

[optimizer, metric] = imregconfig('monomodal');

movingRegistered = imregister(moving, fixed,...

    'affine', optimizer, metric,'InitialTransformation',tformEstimate);
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Display the result of this registration. Note the imregister has achieved a very
accurate registration, given the the good initial condition provided by imregcorr .

figure

imshowpair(fixed, movingRegistered,'Scaling','joint');
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Intensity-Based Automatic Image Registration

Intensity-based automatic image registration is an iterative process. It requires that
you specify a pair of images, a metric, an optimizer, and a transformation type. The
metric defines the image similarity metric for evaluating the accuracy of the registration.
This image similarity metric takes two images and returns a scalar value that describes
how similar the images are. The optimizer defines the methodology for minimizing
or maximizing the similarity metric. The transformation type defines the type of 2-
D transformation that brings the misaligned image (called the moving image) into
alignment with the reference image (called the fixed image).

The process begins with the transform type you specify and an internally determined
transformation matrix. Together, they determine the specific image transformation that
is applied to the moving image with bilinear interpolation.

Next, the metric compares the transformed moving image to the fixed image and a metric
value is computed.

Finally, the optimizer checks for a stop condition. A stop condition is anything that
warrants the termination of the process. In most cases, the process has reached a point
of diminishing returns or it has reached the specified maximum number of iterations. If
there is no stop condition, the optimizer adjusts the transformation matrix to begin the
next iteration.
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Perform intensity-based image registration with the following steps:

1 Read the images into the workspace with imread.
2 Create the optimizer and metric with imregconfig.
3 Register the images with imregister.
4 View the results with imshowpair or save a copy of an image showing the results

with imfuse.
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The example, “Registering Multimodal MRI Images” on page 7-39, demonstrates this
workflow in detail.
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Registering Multimodal MRI Images

This example shows how you can use imregister to automatically align two magnetic
resonance images (MRI) to a common coordinate system using intensity-based image
registration. Unlike some other techniques, it does not find features or use control
points. Intensity-based registration is often well-suited for medical and remotely sensed
imagery.

Step 1: Load Images

This example uses two magnetic resonance (MRI) images of a knee. The fixed image is a
spin echo image, while the moving image is a spin echo image with inversion recovery.
The two sagittal slices were acquired at the same time but are slightly out of alignment.

fixed = dicomread('knee1.dcm');

moving = dicomread('knee2.dcm');

The imshowpair function is a useful function for visualizing images during every part of
the registration process. Use it to see the two images individually in a montage fashion or
display them stacked to show the amount of misregistration.

figure, imshowpair(moving, fixed, 'montage')

title('Unregistered')
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In the overlapping image from imshowpair, gray areas correspond to areas that have
similar intensities, while magenta and green areas show places where one image is
brighter than the other. In some image pairs, green and magenta areas don't always
indicate misregistration, but in this example it's easy to use the color information to see
where they do.

figure, imshowpair(moving, fixed)

title('Unregistered')
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Step 2: Set up the Initial Registration

The imregconfig function makes it easy to pick the correct optimizer and metric
configuration to use with imregister. These two images have different intensity
distributions, which suggests a multimodal configuration.

[optimizer,metric] = imregconfig('multimodal');

The distortion between the two images includes scaling, rotation, and (possibly) shear.
Use an affine transformation to register the images.

It's very, very rare that imregister will align images perfectly with the default
settings. Nevertheless, using them is a useful way to decide which properties to tune
first.

movingRegisteredDefault = imregister(moving, fixed, 'affine', optimizer, metric);

figure, imshowpair(movingRegisteredDefault, fixed)

title('A: Default registration')
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Step 3: Improve the Registration

The initial registration is not very good. There are still significant regions of poor
alignment, particularly along the right edge. Try to improve the registration by adjusting
the optimizer and metric configuration properties.

The optimizer and metric variables are objects whose properties control the registration.

disp(optimizer)
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disp(metric)

  registration.optimizer.OnePlusOneEvolutionary

  Properties:

         GrowthFactor: 1.050000e+00

              Epsilon: 1.500000e-06

        InitialRadius: 6.250000e-03

    MaximumIterations: 100

  registration.metric.MattesMutualInformation

  Properties:

    NumberOfSpatialSamples: 500

     NumberOfHistogramBins: 50

              UseAllPixels: 1

The InitialRadius property of the optimizer controls the initial step size used in
parameter space to refine the geometric transformation. When multi-modal registration
problems do not converge with the default parameters, the InitialRadius is a good first
parameter to adjust. Start by reducing the default value of InitialRadius by a scale factor
of 3.

optimizer.InitialRadius = optimizer.InitialRadius/3.5;

movingRegisteredAdjustedInitialRadius = imregister(moving, fixed, 'affine', optimizer, metric);

figure, imshowpair(movingRegisteredAdjustedInitialRadius, fixed)

title('Adjusted InitialRadius')
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Adjusting the InitialRadius had a positive impact. There is a noticeable improvement in
the alignment of the images at the top and right edges.

The MaximumIterations property of the optimizer controls the maximum number of
iterations that the optimizer will be allowed to take. Increasing the MaximumIterations
allows the registration search to run longer and potentially find better registration
results. Does the registration continue to improve if the InitialRadius from the last step
is used with a large number of interations?



 Registering Multimodal MRI Images

7-45

optimizer.MaximumIterations = 300;

movingRegisteredAdjustedInitialRadius300 = imregister(moving, fixed, 'affine', optimizer, metric);

figure, imshowpair(movingRegisteredAdjustedInitialRadius300, fixed)

title('B: Adjusted InitialRadius, MaximumIterations = 300, Adjusted InitialRadius.')

Further improvement in registration were achieved by reusing the InitialRadius
optimizer setting from the previous registration and allowing the optimizer to take a
large number of iterations.
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Step 4: Use Initial Conditions to Improve Registration

Optimization based registration works best when a good initial condition can be given
for the registration that relates the moving and fixed images. A useful technique for
getting improved registration results is to start with more simple transformation types
like 'rigid', and then use the resulting transformation as an initial condition for more
complicated transformation types like 'affine'.

The function imregtform uses the same algorithm as imregister, but returns a
geometric transformation object as output instead of a registered output image. Use
imregtform to get an initial transformation estimate based on a 'similarity' model
(translation,rotation, and scale).

The previous registration results showed in improvement after modifying the
MaximumIterations and InitialRadius properties of the optimizer. Keep these optimizer
settings while using initial conditions while attempting to refine the registration further.

tformSimilarity = imregtform(moving,fixed,'similarity',optimizer,metric);

Because the registration is being solved in the default MATLAB coordinate system, also
known as the intrinsic coordinate system, obtain the default spatial referencing object
that defines the location and resolution of the fixed image.

Rfixed = imref2d(size(fixed));

Use imwarp to apply the geometric transformation output from imregtform to the
moving image to align it with the fixed image. Use the 'OutputView' option in imwarp to
specify the world limits and resolution of the output resampled image. Specifying Rfixed
as the 'OutputView' forces the resampled moving image to have the same resolution and
world limits as the fixed image.

movingRegisteredRigid = imwarp(moving,tformSimilarity,'OutputView',Rfixed);

figure, imshowpair(movingRegisteredRigid, fixed);

title('C: Registration based on similarity transformation model.');
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The "T" property of the output geometric transformation defines the transformation
matrix that maps points in moving to corresponding points in fixed.

tformSimilarity.T

ans =

    1.0331   -0.1110         0

    0.1110    1.0331         0
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  -51.1491    6.9891    1.0000

Use the 'InitialTransformation' Name/Value in imregister to refine this registration by
using an 'affine' transformation model with the 'similarity' results used as an initial
condition for the geometric transformation. This refined estimate for the registration
includes the possibility of shear.

movingRegisteredAffineWithIC = imregister(moving,fixed,'affine',optimizer,metric,...

    'InitialTransformation',tformSimilarity);

figure, imshowpair(movingRegisteredAffineWithIC,fixed);

title('D: Registration from affine model based on similarity initial condition.');
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Using the 'InitialTransformation' to refine the 'similarity' result of imregtform with a
full affine model has also yielded a nice registration result.

Step 5: Deciding When Enough is Enough

Comparing the results of running imregister with different configurations and initial
conditions, it becomes apparent that there are a large number of input parameters that
can be varied in imregister, each of which may lead to different registration results.
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figure

imshowpair(movingRegisteredDefault, fixed)

title('A - Default settings.');

figure

imshowpair(movingRegisteredAdjustedInitialRadius, fixed)

title('B - Adjusted InitialRadius, 100 Iterations.');

figure

imshowpair(movingRegisteredAdjustedInitialRadius300, fixed)

title('C - Adjusted InitialRadius, 300 Iterations.');

figure

imshowpair(movingRegisteredAffineWithIC, fixed)

title('D - Registration from affine model based on similarity initial condition.');
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It can be difficult to quantitatively compare registration results because there is no one
quality metric that accurately describes the alignment of two images. Often, registration
results must be judged qualitatively by visualizing the results. In The results above, the
registration results in C) and D) are both very good and are difficult to tell apart visually.

Step 6: Alternate Visualizations

Often as the quality of multimodal registrations improve it becomes more difficult to
judge the quality of registration visually. This is because the intensity differences can
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obscure areas of misalignment. Sometimes switching to a different display mode for
imshowpair exposes hidden details. (This is not always the case.)
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Designing and Implementing Linear
Filters for Image Data

The Image Processing Toolbox software provides a number of functions for designing and
implementing two-dimensional linear filters for image data. This chapter describes these
functions and how to use them effectively.

• “What Is Image Filtering in the Spatial Domain?” on page 8-2
• “Filter Images Using imfilter” on page 8-5
• “How imfilter Handles Data Types” on page 8-7
• “imfilter Boundary Padding Options” on page 8-9
• “Filter Images Using imfilter with Convolution” on page 8-13
• “Filter Images Using Predefined Filters” on page 8-14
• “Filter Multidimensional Images with imfilter” on page 8-17
• “What is Guided Image Filtering?” on page 8-19
• “Perform Flash/No-flash Denoising with Guided Filter” on page 8-20
• “Designing Linear Filters in the Frequency Domain” on page 8-25
• “Two-Dimensional Finite Impulse Response (FIR) Filters” on page 8-33
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What Is Image Filtering in the Spatial Domain?

Filtering is a technique for modifying or enhancing an image. For example, you can
filter an image to emphasize certain features or remove other features. Image processing
operations implemented with filtering include smoothing, sharpening, and edge
enhancement.

Filtering is a neighborhood operation, in which the value of any given pixel in the
output image is determined by applying some algorithm to the values of the pixels in
the neighborhood of the corresponding input pixel. A pixel's neighborhood is some set
of pixels, defined by their locations relative to that pixel. (See“Neighborhood or Block
Processing: An Overview” for a general discussion of neighborhood operations.) Linear
filtering is filtering in which the value of an output pixel is a linear combination of the
values of the pixels in the input pixel's neighborhood.

Convolution

Linear filtering of an image is accomplished through an operation called convolution.
Convolution is a neighborhood operation in which each output pixel is the weighted sum
of neighboring input pixels. The matrix of weights is called the convolution kernel, also
known as the filter. A convolution kernel is a correlation kernel that has been rotated 180
degrees.

For example, suppose the image is

A = [17  24   1   8  15

     23   5   7  14  16

      4   6  13  20  22

     10  12  19  21   3

     11  18  25   2   9]

and the convolution kernel is

h = [8   1   6

     3   5   7

     4   9   2]

The following figure shows how to compute the (2,4) output pixel using these steps:

1 Rotate the convolution kernel 180 degrees about its center element.
2 Slide the center element of the convolution kernel so that it lies on top of the (2,4)

element of A.
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3 Multiply each weight in the rotated convolution kernel by the pixel of A underneath.
4 Sum the individual products from step 3.

Hence the (2,4) output pixel is

Computing the (2,4) Output of Convolution

Correlation

The operation called correlation is closely related to convolution. In correlation, the
value of an output pixel is also computed as a weighted sum of neighboring pixels. The
difference is that the matrix of weights, in this case called the correlation kernel, is not
rotated during the computation. The Image Processing Toolbox filter design functions
return correlation kernels.

The following figure shows how to compute the (2,4) output pixel of the correlation of A,
assuming h is a correlation kernel instead of a convolution kernel, using these steps:

1 Slide the center element of the correlation kernel so that lies on top of the (2,4)
element of A.

2 Multiply each weight in the correlation kernel by the pixel of A underneath.
3 Sum the individual products from step 3.

The (2,4) output pixel from the correlation is
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Computing the (2,4) Output of Correlation
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Filter Images Using imfilter

This example shows how to filter an image with a 5-by-5 filter containing equal weights
(often called an averaging filter) using imfilter.

MATLAB has several two-dimensional and multidimensional filtering functions.
The function filter2 performs two-dimensional correlation, conv2 performs two-
dimensional convolution, and convn performs multidimensional convolution. Each of
these filtering functions always converts the input to double, and the output is always
double. These other filtering functions always assume the input is zero padded, and
they do not support other padding options.

In contrast, the imfilter function does not convert input images to double. The
imfilter function also offers a flexible set of boundary padding options.

Read image.

I = imread('coins.png');

Create filter.

h = ones(5,5) / 25;

Apply filter to image using imfilter.

I2 = imfilter(I,h);

Display original image and filtered image for comparison.

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image')
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How imfilter Handles Data Types

The imfilter function handles data types similarly to the way the image arithmetic
functions do, as described in “Image Arithmetic Saturation Rules” on page 2-26.
The output image has the same data type, or numeric class, as the input image. The
imfilter function computes the value of each output pixel using double-precision,
floating-point arithmetic. If the result exceeds the range of the data type, the imfilter
function truncates the result to that data type's allowed range. If it is an integer data
type, imfilter rounds fractional values.

Because of the truncation behavior, you might sometimes want to consider converting
your image to a different data type before calling imfilter. In this example, the output
of imfilter has negative values when the input is of class double.

A = magic(5)

A =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

h = [-1 0 1]

h =

    -1     0     1

imfilter(A,h)

ans =

    24   -16   -16    14    -8

     5   -16     9     9   -14

     6     9    14     9   -20

    12     9     9   -16   -21

    18    14   -16   -16    -2

Notice that the result has negative values. Now suppose A is of class uint8, instead of
double.

A = uint8(magic(5));

imfilter(A,h)
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ans =

    24     0     0    14     0

     5     0     9     9     0

     6     9    14     9     0

    12     9     9     0     0

    18    14     0     0     0

Since the input to imfilter is of class uint8, the output also is of class uint8, and so
the negative values are truncated to 0. In such cases, it might be appropriate to convert
the image to another type, such as a signed integer type, single, or double, before
calling imfilter.
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imfilter Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of the
convolution or correlation kernel is usually off the edge of the image, as illustrated in the
following figure.

When the Values of the Kernel Fall Outside the Image

The imfilter function normally fills in these off-the-edge image pixels by assuming
that they are 0. This is called zero padding and is illustrated in the following figure.
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Zero Padding of Outside Pixels

When you filter an image, zero padding can result in a dark band around the edge of the
image, as shown in this example.

I = imread('eight.tif');

h = ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original Image');

figure, imshow(I2), title('Filtered Image with Black Border')
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To eliminate the zero-padding artifacts around the edge of the image, imfilter offers
an alternative boundary padding method called border replication. In border replication,
the value of any pixel outside the image is determined by replicating the value from the
nearest border pixel. This is illustrated in the following figure.

Replicated Boundary Pixels
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To filter using border replication, pass the additional optional argument 'replicate' to
imfilter.

I3 = imfilter(I,h,'replicate');

figure, imshow(I3); 

title('Filtered Image with Border Replication')

The imfilter function supports other boundary padding options, such as 'circular'
and 'symmetric'. See the reference page for imfilter for details.



 Filter Images Using imfilter with Convolution

8-13

Filter Images Using imfilter with Convolution

This example shows how to perform image filtering using convolution with imfilter.
By default, imfilter uses correlation because the toolbox filter design functions produce
correlation kernels.

Create a sample matrix.

A = magic(5)

A =

    17    24     1     8    15

    23     5     7    14    16

     4     6    13    20    22

    10    12    19    21     3

    11    18    25     2     9

Create a filter.

h = [-1 0 1];

Filter using correlation, the default.

imfilter(A,h)

ans =

    24   -16   -16    14    -8

     5   -16     9     9   -14

     6     9    14     9   -20

    12     9     9   -16   -21

    18    14   -16   -16    -2

Filter using convolution, using the parameter.

imfilter(A,h,'conv')

ans =

   -24    16    16   -14     8

    -5    16    -9    -9    14

    -6    -9   -14    -9    20

   -12    -9    -9    16    21

   -18   -14    16    16     2
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Filter Images Using Predefined Filters

This example shows how to create filters using the fspecial function that can be used
with imfilter. The fspecial function produces several kinds of predefined filters, in the
form of correlation kernels. This example illustrates applying an unsharp masking filter
to a grayscale image. The unsharp masking filter has the effect of making edges and fine
detail in the image more crisp.

Read image.

I = imread('moon.tif');

Create filter, using fspecial .

h = fspecial('unsharp')

h =

   -0.1667   -0.6667   -0.1667

   -0.6667    4.3333   -0.6667

   -0.1667   -0.6667   -0.1667

Apply filter to image using imfilter .

I2 = imfilter(I,h);

Display original image and filtered image for comparison.

imshow(I)

title('Original Image')

figure

imshow(I2)

title('Filtered Image')
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Filter Multidimensional Images with imfilter

This example shows how to filter a multidimensional truecolor image using imfilter.
Filtering a three-dimensional image with a two-dimensional filter is equivalent to
filtering each plane of the three-dimensional image individually with the same two-
dimensional filter.

Read truecolor image.

rgb = imread('peppers.png');

imshow(rgb);

Create a filter.

h = ones(5,5)/25

h =

    0.0400    0.0400    0.0400    0.0400    0.0400

    0.0400    0.0400    0.0400    0.0400    0.0400

    0.0400    0.0400    0.0400    0.0400    0.0400

    0.0400    0.0400    0.0400    0.0400    0.0400

    0.0400    0.0400    0.0400    0.0400    0.0400
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Filter the image using imfilter and display it.

h = ones(5,5)/25;

rgb2 = imfilter(rgb,h);

figure, imshow(rgb2)
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What is Guided Image Filtering?

The imguidedfilter function performs edge-preserving smoothing on an image, using
the content of a second image, called a guidance image, to influence the filtering. The
guidance image can be the image itself, a different version of the image, or a completely
different image. Guided image filtering is a neighborhood operation, like other filtering
operations, but takes into account the statistics of a region in the corresponding spatial
neighborhood in the guidance image when calculating the value of the output pixel.

If the guidance is the same as the image to be filtered, the structures are the same—
an edge in original image is the same in the guidance image. If the guidance image
is different, structures in the guidance image will impact the filtered image, in effect,
imprinting these structures on the original image. This effect is called structure
transference.
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Perform Flash/No-flash Denoising with Guided Filter

This example shows how to use a guided filter to smooth an image, reducing noise, while
preserving edges. The example uses two pictures of the same scene, one taken with a
flash and the other without a flash. The version without a flash preserves colors but is
noisy due to the low-light conditions. This example uses the version taken with a flash as
the guidance image.

Read the image that you want to filter. In this example, it’s an image of some children’s
toys taken without a flash, A. Because of the low light conditions, the image contains a lot
of noise.

A = imread('toysnoflash.png');

figure;

imshow(A);

title('Input Image - Camera Flash Off')
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Next, read the image that you want to use as a guidance image. In this example, the
guidance image is a picture of the same scene taken with a flash.

G = imread('toysflash.png');

figure;

imshow(G);

title('Guidance Image - Camera Flash On')
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Perform the guided filtering operation. Using the imguidedfilter function, you can
specify the size of the neighborhood used for filtering. The default is a 5-by-5 square.
This example uses a 3-by-3 neighborhood. You can also specify the amount of smoothing
performed by the filter. The value can be any positive number. One way to approach this
is to use the default first and view the results. If you want less smoothing and more edge
preservation, use a lower value for this parameter. For more smoothing, use a higher
value. This example sets the value of the smoothing parameter.

nhoodSize = 3;

smoothValue  = 0.001*diff(getrangefromclass(G)).^2;

B = imguidedfilter(A, G, 'NeighborhoodSize',nhoodSize, 'DegreeOfSmoothing',smoothValue);
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figure, imshow(B), title('Filtered Image')

Examine a close up of an area of the original image and compare it to the filtered image
to see the effect of this edge-preserving smoothing filter.

figure; 

h1 = subplot(1,2,1); 

imshow(A), title('Region in Original Image'), axis on

h2 = subplot(1,2,2); 

imshow(B), title('Region in Filtered Image'), axis on

linkaxes([h1 h2])

xlim([520 660])

ylim([150 250])
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Designing Linear Filters in the Frequency Domain

In this section...

“Transform 1-D FIR Filter to 2-D FIR Filter” on page 8-25
“Frequency Sampling Method” on page 8-28
“Windowing Method” on page 8-29
“Creating the Desired Frequency Response Matrix” on page 8-30
“Computing the Frequency Response of a Filter” on page 8-31

For information about designing linear filters in the spatial domain, see “What Is Image
Filtering in the Spatial Domain?” on page 8-2.

Transform 1-D FIR Filter to 2-D FIR Filter

This example shows how to transform a one-dimensional FIR filter into a two-
dimensional FIR filter using the ftrans2 function. This function can be useful because
it is easier to design a one-dimensional filter with particular characteristics than a
corresponding two-dimensional filter. The frequency transformation method preserves
most of the characteristics of the one-dimensional filter, particularly the transition
bandwidth and ripple characteristics. The shape of the one-dimensional frequency
response is clearly evident in the two-dimensional response.

This function uses atransformation matrix, a set of elements that defines the frequency
transformation. This function's default transformation matrix produces filters with
nearly circular symmetry. By defining your own transformation matrix, you can obtain
different symmetries. (See Jae S. Lim, Two-Dimensional Signal and Image Processing,
1990, for details.)

Create 1-D FIR filter.

b = remez(10,[0 0.4 0.6 1],[1 1 0 0])

b =

  Columns 1 through 9

    0.0537   -0.0000   -0.0916   -0.0001    0.3131    0.4999    0.3131   -0.0001   -0.0916
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  Columns 10 through 11

   -0.0000    0.0537

Transform the 1-D filter to a 2-D filter.

h = ftrans2(b);

h =

  Columns 1 through 9

    0.0001    0.0005    0.0024    0.0063    0.0110    0.0132    0.0110    0.0063    0.0024

    0.0005    0.0031    0.0068    0.0042   -0.0074   -0.0147   -0.0074    0.0042    0.0068

    0.0024    0.0068   -0.0001   -0.0191   -0.0251   -0.0213   -0.0251   -0.0191   -0.0001

    0.0063    0.0042   -0.0191   -0.0172    0.0128    0.0259    0.0128   -0.0172   -0.0191

    0.0110   -0.0074   -0.0251    0.0128    0.0924    0.1457    0.0924    0.0128   -0.0251

    0.0132   -0.0147   -0.0213    0.0259    0.1457    0.2021    0.1457    0.0259   -0.0213

    0.0110   -0.0074   -0.0251    0.0128    0.0924    0.1457    0.0924    0.0128   -0.0251

    0.0063    0.0042   -0.0191   -0.0172    0.0128    0.0259    0.0128   -0.0172   -0.0191

    0.0024    0.0068   -0.0001   -0.0191   -0.0251   -0.0213   -0.0251   -0.0191   -0.0001

    0.0005    0.0031    0.0068    0.0042   -0.0074   -0.0147   -0.0074    0.0042    0.0068

    0.0001    0.0005    0.0024    0.0063    0.0110    0.0132    0.0110    0.0063    0.0024

  Columns 10 through 11

    0.0005    0.0001

    0.0031    0.0005

    0.0068    0.0024

    0.0042    0.0063

   -0.0074    0.0110

   -0.0147    0.0132

   -0.0074    0.0110

    0.0042    0.0063

    0.0068    0.0024

    0.0031    0.0005

    0.0005    0.0001

View the frequency response of the filters.

[H,w] = freqz(b,1,64,'whole');

colormap(jet(64))

plot(w/pi-1,fftshift(abs(H)))

figure, freqz2(h,[32 32])
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Frequency Sampling Method

The frequency sampling method creates a filter based on a desired frequency response.
Given a matrix of points that define the shape of the frequency response, this method
creates a filter whose frequency response passes through those points. Frequency
sampling places no constraints on the behavior of the frequency response between the
given points; usually, the response ripples in these areas. (Ripples are oscillations around
a constant value. The frequency response of a practical filter often has ripples where the
frequency response of an ideal filter is flat.)

The toolbox function fsamp2 implements frequency sampling design for two-dimensional
FIR filters. fsamp2 returns a filter h with a frequency response that passes through
the points in the input matrix Hd. The example below creates an 11-by-11 filter using
fsamp2 and plots the frequency response of the resulting filter. (The freqz2 function
in this example calculates the two-dimensional frequency response of a filter. See
“Computing the Frequency Response of a Filter” on page 8-31 for more information.)

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11,'meshgrid');
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mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))

h = fsamp2(Hd);

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual Two-Dimensional Frequency
Response (right)

Notice the ripples in the actual frequency response, compared to the desired frequency
response. These ripples are a fundamental problem with the frequency sampling design
method. They occur wherever there are sharp transitions in the desired response.

You can reduce the spatial extent of the ripples by using a larger filter. However, a larger
filter does not reduce the height of the ripples, and requires more computation time
for filtering. To achieve a smoother approximation to the desired frequency response,
consider using the frequency transformation method or the windowing method.

Windowing Method

The windowing method involves multiplying the ideal impulse response with a window
function to generate a corresponding filter, which tapers the ideal impulse response. Like
the frequency sampling method, the windowing method produces a filter whose frequency
response approximates a desired frequency response. The windowing method, however,
tends to produce better results than the frequency sampling method.

The toolbox provides two functions for window-based filter design, fwind1 and fwind2.
fwind1 designs a two-dimensional filter by using a two-dimensional window that it
creates from one or two one-dimensional windows that you specify. fwind2 designs a
two-dimensional filter by using a specified two-dimensional window directly.
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fwind1 supports two different methods for making the two-dimensional windows it uses:

• Transforming a single one-dimensional window to create a two-dimensional window
that is nearly circularly symmetric, by using a process similar to rotation

• Creating a rectangular, separable window from two one-dimensional windows, by
computing their outer product

The example below uses fwind1 to create an 11-by-11 filter from the desired frequency
response Hd. The example uses the Signal Processing Toolbox hamming function to create
a one-dimensional window, which fwind1 then extends to a two-dimensional window.

Hd = zeros(11,11); Hd(4:8,4:8) = 1;

[f1,f2] = freqspace(11,'meshgrid');

mesh(f1,f2,Hd), axis([-1 1 -1 1 0 1.2]), colormap(jet(64))

h = fwind1(Hd,hamming(11));

figure, freqz2(h,[32 32]), axis([-1 1 -1 1 0 1.2])

Desired Two-Dimensional Frequency Response (left) and Actual Two-Dimensional Frequency
Response (right)

Creating the Desired Frequency Response Matrix

The filter design functions fsamp2, fwind1, and fwind2 all create filters based on a
desired frequency response magnitude matrix. Frequency response is a mathematical
function describing the gain of a filter in response to different input frequencies.

You can create an appropriate desired frequency response matrix using the freqspace
function. freqspace returns correct, evenly spaced frequency values for any size
response. If you create a desired frequency response matrix using frequency points other
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than those returned by freqspace, you might get unexpected results, such as nonlinear
phase.

For example, to create a circular ideal lowpass frequency response with cutoff at 0.5, use

[f1,f2] = freqspace(25,'meshgrid');

Hd = zeros(25,25); d = sqrt(f1.^2 + f2.^2) < 0.5;

Hd(d) = 1;

mesh(f1,f2,Hd)

Ideal Circular Lowpass Frequency Response

Note that for this frequency response, the filters produced by fsamp2, fwind1, and
fwind2 are real. This result is desirable for most image processing applications. To
achieve this in general, the desired frequency response should be symmetric about the
frequency origin (f1 = 0, f2 = 0).

Computing the Frequency Response of a Filter

The freqz2 function computes the frequency response for a two-dimensional filter.
With no output arguments, freqz2 creates a mesh plot of the frequency response. For
example, consider this FIR filter,

h =[0.1667    0.6667    0.1667

    0.6667   -3.3333    0.6667

    0.1667    0.6667    0.1667];

This command computes and displays the 64-by-64 point frequency response of h.

freqz2(h)
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Frequency Response of a Two-Dimensional Filter

To obtain the frequency response matrix H and the frequency point vectors f1 and f2,
use output arguments

[H,f1,f2] = freqz2(h);

freqz2 normalizes the frequencies f1 and f2 so that the value 1.0 corresponds to half
the sampling frequency, or π radians.

For a simple m-by-n response, as shown above, freqz2 uses the two-dimensional fast
Fourier transform function fft2. You can also specify vectors of arbitrary frequency
points, but in this case freqz2 uses a slower algorithm.

See “Fourier Transform” on page 9-2 for more information about the fast Fourier
transform and its application to linear filtering and filter design.
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Two-Dimensional Finite Impulse Response (FIR) Filters

The Image Processing Toolbox software supports one class of linear filter: the two-
dimensional finite impulse response (FIR) filter. FIR filters have a finite extent to a
single point, or impulse. All the Image Processing Toolbox filter design functions return
FIR filters.

FIR filters have several characteristics that make them ideal for image processing in the
MATLAB environment:

• FIR filters are easy to represent as matrices of coefficients.
• Two-dimensional FIR filters are natural extensions of one-dimensional FIR filters.
• There are several well-known, reliable methods for FIR filter design.
• FIR filters are easy to implement.
• FIR filters can be designed to have linear phase, which helps prevent distortion.

Another class of filter, the infinite impulse response (IIR) filter, is not as suitable for
image processing applications. It lacks the inherent stability and ease of design and
implementation of the FIR filter. Therefore, this toolbox does not provide IIR filter
support.

Note Most of the design methods described in this section work by creating a two-
dimensional filter from a one-dimensional filter or window created using Signal
Processing Toolbox functions. Although this toolbox is not required, you might find it
difficult to design filters if you do not have the Signal Processing Toolbox software.
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Transforms

The usual mathematical representation of an image is a function of two spatial variables:
f(x,y). The value of the function at a particular location (x,y) represents the intensity of
the image at that point. This is called the spatial domain. The term transform refers
to an alternative mathematical representation of an image. For example, the Fourier
transform is a representation of an image as a sum of complex exponentials of varying
magnitudes, frequencies, and phases. This is called the frequency domain. Transforms
are useful for a wide range of purposes, including convolution, enhancement, feature
detection, and compression.

This chapter defines several important transforms and shows examples of their
application to image processing.

• “Fourier Transform” on page 9-2
• “Discrete Cosine Transform” on page 9-15
• “Radon Transform” on page 9-19
• “The Inverse Radon Transformation” on page 9-29
• “Fan-Beam Projection Data” on page 9-35
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Fourier Transform

In this section...

“Definition of Fourier Transform” on page 9-2
“Discrete Fourier Transform” on page 9-7
“Applications of the Fourier Transform” on page 9-10

Definition of Fourier Transform

The Fourier transform is a representation of an image as a sum of complex exponentials
of varying magnitudes, frequencies, and phases. The Fourier transform plays a critical
role in a broad range of image processing applications, including enhancement, analysis,
restoration, and compression.

If f(m,n) is a function of two discrete spatial variables m and n, then the two-dimensional
Fourier transform of f(m,n) is defined by the relationship
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The variables ω1 and ω2 are frequency variables; their units are radians per sample.
F(ω1,ω2) is often called the frequency-domain representation of f(m,n). F(ω1,ω2) is a
complex-valued function that is periodic both in ω1 and ω2, with period 2p . Because of
the periodicity, usually only the range - £ £p w w p1 2,  is displayed. Note that F(0,0) is
the sum of all the values of f(m,n). For this reason, F(0,0) is often called the constant
component or DC component of the Fourier transform. (DC stands for direct current; it is
an electrical engineering term that refers to a constant-voltage power source, as opposed
to a power source whose voltage varies sinusoidally.)

The inverse of a transform is an operation that when performed on a transformed image
produces the original image. The inverse two-dimensional Fourier transform is given by
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Roughly speaking, this equation means that f(m,n) can be represented as a sum of an
infinite number of complex exponentials (sinusoids) with different frequencies. The
magnitude and phase of the contribution at the frequencies (ω1,ω2) are given by F(ω1,ω2).

Visualizing the Fourier Transform

To illustrate, consider a function f(m,n) that equals 1 within a rectangular region and 0
everywhere else. To simplify the diagram, f(m,n) is shown as a continuous function, even
though the variables m and n are discrete.

Rectangular Function

The following figure shows, as a mesh plot, the magnitude of the Fourier transform,

F( , ) ,w w1 2

of the rectangular function shown in the preceding figure. The mesh plot of the
magnitude is a common way to visualize the Fourier transform.
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Magnitude Image of a Rectangular Function

The peak at the center of the plot is F(0,0), which is the sum of all the values in f(m,n).
The plot also shows that F(ω1,ω2) has more energy at high horizontal frequencies than at
high vertical frequencies. This reflects the fact that horizontal cross sections of f(m,n) are
narrow pulses, while vertical cross sections are broad pulses. Narrow pulses have more
high-frequency content than broad pulses.

Another common way to visualize the Fourier transform is to display

log ( , )F w w1 2

as an image, as shown.
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Log of the Fourier Transform of a Rectangular Function

Using the logarithm helps to bring out details of the Fourier transform in regions where
F(ω1,ω2) is very close to 0.

Examples of the Fourier transform for other simple shapes are shown below.
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Fourier Transforms of Some Simple Shapes
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Discrete Fourier Transform

Working with the Fourier transform on a computer usually involves a form of the
transform known as the discrete Fourier transform (DFT). A discrete transform is a
transform whose input and output values are discrete samples, making it convenient
for computer manipulation. There are two principal reasons for using this form of the
transform:

• The input and output of the DFT are both discrete, which makes it convenient for
computer manipulations.

• There is a fast algorithm for computing the DFT known as the fast Fourier transform
(FFT).

The DFT is usually defined for a discrete function f(m,n) that is nonzero only over the
finite region 0 1£ £ -m M  and 0 1£ £ -n N . The two-dimensional M-by-N DFT and
inverse M-by-N DFT relationships are given by
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The values F(p,q) are the DFT coefficients of f(m,n). The zero-frequency coefficient,
F(0,0), is often called the "DC component." DC is an electrical engineering term that
stands for direct current. (Note that matrix indices in MATLAB always start at 1 rather
than 0; therefore, the matrix elements f(1,1) and F(1,1) correspond to the mathematical
quantities f(0,0) and F(0,0), respectively.)

The MATLAB functions fft, fft2, and fftn implement the fast Fourier transform
algorithm for computing the one-dimensional DFT, two-dimensional DFT, and N-
dimensional DFT, respectively. The functions ifft, ifft2, and ifftn compute the
inverse DFT.

Relationship to the Fourier Transform

The DFT coefficients F(p,q) are samples of the Fourier transform F(ω1,ω2).
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Visualizing the Discrete Fourier Transform

1 Construct a matrix f that is similar to the function f(m,n) in the example in
“Definition of Fourier Transform” on page 9-2. Remember that f(m,n) is equal
to 1 within the rectangular region and 0 elsewhere. Use a binary image to represent
f(m,n).

f = zeros(30,30);

f(5:24,13:17) = 1;

imshow(f,'InitialMagnification','fit')

2 Compute and visualize the 30-by-30 DFT of f with these commands.

F = fft2(f);

F2 = log(abs(F));

imshow(F2,[-1 5],'InitialMagnification','fit');

colormap(jet); colorbar
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Discrete Fourier Transform Computed Without Padding

This plot differs from the Fourier transform displayed in “Visualizing the Fourier
Transform” on page 9-3. First, the sampling of the Fourier transform is much
coarser. Second, the zero-frequency coefficient is displayed in the upper left corner
instead of the traditional location in the center.

3 To obtain a finer sampling of the Fourier transform, add zero padding to f when
computing its DFT. The zero padding and DFT computation can be performed in a
single step with this command.

F = fft2(f,256,256);

This command zero-pads f to be 256-by-256 before computing the DFT.

imshow(log(abs(F)),[-1 5]); colormap(jet); colorbar
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Discrete Fourier Transform Computed with Padding

4 The zero-frequency coefficient, however, is still displayed in the upper left corner
rather than the center. You can fix this problem by using the function fftshift,
which swaps the quadrants of F so that the zero-frequency coefficient is in the center.

F = fft2(f,256,256);F2 = fftshift(F);

imshow(log(abs(F2)),[-1 5]); colormap(jet); colorbar

The resulting plot is identical to the one shown in “Visualizing the Fourier
Transform” on page 9-3.

Applications of the Fourier Transform

This section presents a few of the many image processing-related applications of the
Fourier transform.

Frequency Response of Linear Filters

The Fourier transform of the impulse response of a linear filter gives the frequency
response of the filter. The function freqz2 computes and displays a filter's frequency
response. The frequency response of the Gaussian convolution kernel shows that this
filter passes low frequencies and attenuates high frequencies.

h = fspecial('gaussian');

freqz2(h)
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Frequency Response of a Gaussian Filter

See “Designing Linear Filters in the Frequency Domain” on page 8-25 for more
information about linear filtering, filter design, and frequency responses.

Fast Convolution

A key property of the Fourier transform is that the multiplication of two Fourier
transforms corresponds to the convolution of the associated spatial functions. This
property, together with the fast Fourier transform, forms the basis for a fast convolution
algorithm.

Note The FFT-based convolution method is most often used for large inputs. For small
inputs it is generally faster to use imfilter.

To illustrate, this example performs the convolution of A and B, where A is an M-by-N
matrix and B is a P-by-Q matrix:

1 Create two matrices.



9 Transforms

9-12

A = magic(3);

B = ones(3);

2 Zero-pad A and B so that they are at least (M+P-1)-by-(N+Q-1). (Often A and B are
zero-padded to a size that is a power of 2 because fft2 is fastest for these sizes.) The
example pads the matrices to be 8-by-8.

A(8,8) = 0;

B(8,8) = 0;

3 Compute the two-dimensional DFT of A and B using fft2, multiply the two DFTs
together, and compute the inverse two-dimensional DFT of the result using ifft2

C = ifft2(fft2(A).*fft2(B));

4 Extract the nonzero portion of the result and remove the imaginary part caused by
roundoff error.

C = C(1:5,1:5);

C = real(C)

This example produces the following result.

C =

    8.0000    9.0000   15.0000    7.0000    6.0000

   11.0000   17.0000   30.0000   19.0000   13.0000

   15.0000   30.0000   45.0000   30.0000   15.0000

    7.0000   21.0000   30.0000   23.0000    9.0000

    4.0000   13.0000   15.0000   11.0000    2.0000

Locating Image Features

The Fourier transform can also be used to perform correlation, which is closely related to
convolution. Correlation can be used to locate features within an image; in this context
correlation is often called template matching.

This example illustrates how to use correlation to locate occurrences of the letter "a" in
an image containing text:

1 Read in the sample image.

bw = imread('text.png');

2 Create a template for matching by extracting the letter "a" from the image.
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a = bw(32:45,88:98);

You can also create the template image by using the interactive version of imcrop.

The following figure shows both the original image and the template.

imshow(bw);

figure, imshow(a);

Image (left) and the Template to Correlate (right)

3 Compute the correlation of the template image with the original image by rotating
the template image by 180o and then using the FFT-based convolution technique
described in “Fast Convolution” on page 9-11.

(Convolution is equivalent to correlation if you rotate the convolution kernel by 180o.)
To match the template to the image, use the fft2 and ifft2 functions.

C = real(ifft2(fft2(bw) .* fft2(rot90(a,2),256,256)));

The following image shows the result of the correlation. Bright peaks in the image
correspond to occurrences of the letter.

figure, imshow(C,[]) % Scale image to appropriate display range.
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Correlated Image

4 To view the locations of the template in the image, find the maximum pixel value
and then define a threshold value that is less than this maximum. The locations of
these peaks are indicated by the white spots in the thresholded correlation image.
(To make the locations easier to see in this figure, the thresholded image has been
dilated to enlarge the size of the points.)

max(C(:))

ans =

 68.0000

thresh = 60; % Use a threshold that's a little less than max.

figure, imshow(C > thresh) % Display pixels over threshold.

Correlated, Thresholded Image Showing Template Locations
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Discrete Cosine Transform

In this section...

“DCT Definition” on page 9-15
“The DCT Transform Matrix” on page 9-17
“DCT and Image Compression” on page 9-17

DCT Definition

The discrete cosine transform (DCT) represents an image as a sum of sinusoids of
varying magnitudes and frequencies. The dct2 function computes the two-dimensional
discrete cosine transform (DCT) of an image. The DCT has the property that, for a typical
image, most of the visually significant information about the image is concentrated
in just a few coefficients of the DCT. For this reason, the DCT is often used in image
compression applications. For example, the DCT is at the heart of the international
standard lossy image compression algorithm known as JPEG. (The name comes from the
working group that developed the standard: the Joint Photographic Experts Group.)

The two-dimensional DCT of an M-by-N matrix A is defined as follows.
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The values Bpq are called the DCT coefficients of A. (Note that matrix indices in MATLAB
always start at 1 rather than 0; therefore, the MATLAB matrix elements A(1,1) and
B(1,1) correspond to the mathematical quantities A00 and B00, respectively.)

The DCT is an invertible transform, and its inverse is given by
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The inverse DCT equation can be interpreted as meaning that any M-by-N matrix A can
be written as a sum of MN functions of the form
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These functions are called the basis functions of the DCT. The DCT coefficients Bpq, then,
can be regarded as the weights applied to each basis function. For 8-by-8 matrices, the 64
basis functions are illustrated by this image.

The 64 Basis Functions of an 8-by-8 Matrix

Horizontal frequencies increase from left to right, and vertical frequencies increase
from top to bottom. The constant-valued basis function at the upper left is often called
the DC basis function, and the corresponding DCT coefficient B00 is often called the DC
coefficient.
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The DCT Transform Matrix

There are two ways to compute the DCT using Image Processing Toolbox software. The
first method is to use the dct2 function. dct2 uses an FFT-based algorithm for speedy
computation with large inputs. The second method is to use the DCT transform matrix,
which is returned by the function dctmtx and might be more efficient for small square
inputs, such as 8-by-8 or 16-by-16. The M-by-M transform matrix T is given by

T
M

M

q p

M

p

p M

q M

q M
pq =

+( )










=

≤ ≤ −

≤ ≤ −

≤ ≤ −

1

2 2 1

2

0

1 1

0 1

0 1
cos

,

,p

For an M-by-M matrix A, T*A is an M-by-M matrix whose columns contain the one-
dimensional DCT of the columns of A. The two-dimensional DCT of A can be computed as
B=T*A*T'. Since T is a real orthonormal matrix, its inverse is the same as its transpose.
Therefore, the inverse two-dimensional DCT of B is given by T'*B*T.

DCT and Image Compression

In the JPEG image compression algorithm, the input image is divided into 8-by-8 or
16-by-16 blocks, and the two-dimensional DCT is computed for each block. The DCT
coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG file
reader) decodes the quantized DCT coefficients, computes the inverse two-dimensional
DCT of each block, and then puts the blocks back together into a single image. For
typical images, many of the DCT coefficients have values close to zero; these coefficients
can be discarded without seriously affecting the quality of the reconstructed image.

The example code below computes the two-dimensional DCT of 8-by-8 blocks in the input
image, discards (sets to zero) all but 10 of the 64 DCT coefficients in each block, and
then reconstructs the image using the two-dimensional inverse DCT of each block. The
transform matrix computation method is used.

I = imread('cameraman.tif');

I = im2double(I);

T = dctmtx(8);

dct = @(block_struct) T * block_struct.data * T';

B = blockproc(I,[8 8],dct);

mask = [1   1   1   1   0   0   0   0

        1   1   1   0   0   0   0   0
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        1   1   0   0   0   0   0   0

        1   0   0   0   0   0   0   0

        0   0   0   0   0   0   0   0

        0   0   0   0   0   0   0   0

        0   0   0   0   0   0   0   0

        0   0   0   0   0   0   0   0];

B2 = blockproc(B,[8 8],@(block_struct) mask .* block_struct.data);

invdct = @(block_struct) T' * block_struct.data * T;

I2 = blockproc(B2,[8 8],invdct);

imshow(I), figure, imshow(I2)

Although there is some loss of quality in the reconstructed image, it is clearly
recognizable, even though almost 85% of the DCT coefficients were discarded.
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Radon Transform

In this section...

“Radon Transformation Definition” on page 9-19
“Plotting the Radon Transform” on page 9-22
“Viewing the Radon Transform as an Image” on page 9-24
“Detecting Lines Using the Radon Transform” on page 9-25

Note For information about creating projection data from line integrals along paths
that radiate from a single source, called fan-beam projections, see “Fan-Beam Projection
Data” on page 9-35. To convert parallel-beam projection data to fan-beam projection
data, use the para2fan function.

Radon Transformation Definition

The radon function computes projections of an image matrix along specified directions.

A projection of a two-dimensional function f(x,y) is a set of line integrals. The radon
function computes the line integrals from multiple sources along parallel paths, or
beams, in a certain direction. The beams are spaced 1 pixel unit apart. To represent an
image, the radon function takes multiple, parallel-beam projections of the image from
different angles by rotating the source around the center of the image. The following
figure shows a single projection at a specified rotation angle.
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Parallel-Beam Projection at Rotation Angle Theta

For example, the line integral of f(x,y) in the vertical direction is the projection of f(x,y)
onto the x-axis; the line integral in the horizontal direction is the projection of f(x,y) onto
the y-axis. The following figure shows horizontal and vertical projections for a simple
two-dimensional function.

Horizontal and Vertical Projections of a Simple Function
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Projections can be computed along any angle [[THETA]]. In general, the Radon transform
of f(x,y) is the line integral of f parallel to the y´-axis
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The following figure illustrates the geometry of the Radon transform.

Geometry of the Radon Transform
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Plotting the Radon Transform

You can compute the Radon transform of an image I for the angles specified in the vector
theta using the radon function with this syntax.

[R,xp] = radon(I,theta);

The columns of R contain the Radon transform for each angle in theta. The vector xp
contains the corresponding coordinates along the x′-axis. The center pixel of I is defined
to be floor((size(I)+1)/2); this is the pixel on the x′-axis corresponding to x¢ = 0 .

The commands below compute and plot the Radon transform at 0° and 45° of an image
containing a single square object. xp is the same for all projection angles.

I = zeros(100,100);

I(25:75, 25:75) = 1;

imshow(I)

[R,xp] = radon(I,[0 45]);

figure; plot(xp,R(:,1)); title('R_{0^o} (x\prime)')
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Radon Transform of a Square Function at 0 Degrees

figure; plot(xp,R(:,2)); title('R_{45^o} (x\prime)')
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Radon Transform of a Square Function at 45 Degrees

Viewing the Radon Transform as an Image

The Radon transform for a large number of angles is often displayed as an image. In this
example, the Radon transform for the square image is computed at angles from 0° to
180°, in 1° increments.

theta = 0:180;

[R,xp] = radon(I,theta);

imagesc(theta,xp,R);

title('R_{\theta} (X\prime)');

xlabel('\theta (degrees)');

ylabel('X\prime');

set(gca,'XTick',0:20:180);

colormap(hot);

colorbar
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Radon Transform Using 180 Projections

Detecting Lines Using the Radon Transform

The Radon transform is closely related to a common computer vision operation known as
the Hough transform. You can use the radon function to implement a form of the Hough
transform used to detect straight lines. The steps are

1 Compute a binary edge image using the edge function.

I = fitsread('solarspectra.fts');

I = mat2gray(I);

BW = edge(I);

imshow(I), figure, imshow(BW)
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2 Compute the Radon transform of the edge image.

theta = 0:179;

[R,xp] = radon(BW,theta);

figure, imagesc(theta, xp, R); colormap(hot);

xlabel('\theta (degrees)'); ylabel('x\prime');

title('R_{\theta} (x\prime)');

colorbar
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Radon Transform of an Edge Image

3 Find the locations of strong peaks in the Radon transform matrix. The locations of
these peaks correspond to the locations of straight lines in the original image.

In the following figure, the strongest peaks in R correspond to q = 1
o  and x¢ = -80 . The

line perpendicular to that angle and located at x¢ = -80  is shown below, superimposed
in red on the original image. The Radon transform geometry is shown in black. Notice
that the other strong lines parallel to the red line also appear as peaks at q = 1

o  in the

transform. Also, the lines perpendicular to this line appear as peaks at q = 91
o .
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Radon Transform Geometry and the Strongest Peak (Red)
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The Inverse Radon Transformation

In this section...

“Inverse Radon Transform Definition” on page 9-29
“Reconstructing an Image from Parallel Projection Data” on page 9-31

Inverse Radon Transform Definition

The iradon function inverts the Radon transform and can therefore be used to
reconstruct images.

As described in “Radon Transform” on page 9-19, given an image I and a set of angles
theta, the radon function can be used to calculate the Radon transform.

R = radon(I,theta);

The function iradon can then be called to reconstruct the image I from projection data.

IR = iradon(R,theta);

In the example above, projections are calculated from the original image I.

Note, however, that in most application areas, there is no original image from which
projections are formed. For example, the inverse Radon transform is commonly used
in tomography applications. In X-ray absorption tomography, projections are formed
by measuring the attenuation of radiation that passes through a physical specimen at
different angles. The original image can be thought of as a cross section through the
specimen, in which intensity values represent the density of the specimen. Projections
are collected using special purpose hardware, and then an internal image of the specimen
is reconstructed by iradon. This allows for noninvasive imaging of the inside of a living
body or another opaque object.

iradon reconstructs an image from parallel-beam projections. In parallel-beam
geometry, each projection is formed by combining a set of line integrals through an image
at a specific angle.

The following figure illustrates how parallel-beam geometry is applied in X-ray
absorption tomography. Note that there is an equal number of n emitters and n sensors.
Each sensor measures the radiation emitted from its corresponding emitter, and the
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attenuation in the radiation gives a measure of the integrated density, or mass, of the
object. This corresponds to the line integral that is calculated in the Radon transform.

The parallel-beam geometry used in the figure is the same as the geometry that was
described in “Radon Transform” on page 9-19. f(x,y) denotes the brightness of the image
and R xq ( )¢  is the projection at angle theta.

Parallel-Beam Projections Through an Object

Another geometry that is commonly used is fan-beam geometry, in which there is one
source and n sensors. For more information, see “Fan-Beam Projection Data” on page
9-35. To convert parallel-beam projection data into fan-beam projection data, use the
para2fan function.
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Improving the Results

iradon uses the filtered backprojection algorithm to compute the inverse Radon
transform. This algorithm forms an approximation of the image I based on the
projections in the columns of R. A more accurate result can be obtained by using more
projections in the reconstruction. As the number of projections (the length of theta)
increases, the reconstructed image IR more accurately approximates the original image
I. The vector theta must contain monotonically increasing angular values with a
constant incremental angle Dtheta. When the scalar Dtheta is known, it can be passed
to iradon instead of the array of theta values. Here is an example.

IR = iradon(R,Dtheta);

The filtered backprojection algorithm filters the projections in R and then reconstructs
the image using the filtered projections. In some cases, noise can be present in the
projections. To remove high frequency noise, apply a window to the filter to attenuate
the noise. Many such windowed filters are available in iradon. The example call to
iradon below applies a Hamming window to the filter. See the iradon reference page
for more information. To get unfiltered backprojection data, specify 'none' for the filter
parameter.

IR = iradon(R,theta,'Hamming');

iradon also enables you to specify a normalized frequency, D, above which the filter
has zero response. D must be a scalar in the range [0,1]. With this option, the frequency
axis is rescaled so that the whole filter is compressed to fit into the frequency range
[0,D]. This can be useful in cases where the projections contain little high-frequency
information but there is high-frequency noise. In this case, the noise can be completely
suppressed without compromising the reconstruction. The following call to iradon sets a
normalized frequency value of 0.85.

IR = iradon(R,theta,0.85);

Reconstructing an Image from Parallel Projection Data

The commands below illustrate how to reconstruct an image from parallel projection
data. The test image is the Shepp-Logan head phantom, which can be generated using
the phantom function. The phantom image illustrates many of the qualities that are
found in real-world tomographic imaging of human heads. The bright elliptical shell
along the exterior is analogous to a skull, and the many ellipses inside are analogous to
brain features.
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1 Create a Shepp-Logan head phantom image.

P = phantom(256);

imshow(P)

2 Compute the Radon transform of the phantom brain for three different sets of theta
values. R1 has 18 projections, R2 has 36 projections, and R3 has 90 projections.

theta1 = 0:10:170; [R1,xp] = radon(P,theta1);

theta2 = 0:5:175;  [R2,xp] = radon(P,theta2);

theta3 = 0:2:178;  [R3,xp] = radon(P,theta3);

3 Display a plot of one of the Radon transforms of the Shepp-Logan head phantom.
The following figure shows R3, the transform with 90 projections.

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar

xlabel('\theta'); ylabel('x\prime');
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Radon Transform of Head Phantom Using 90 Projections

Note how some of the features of the input image appear in this image of the
transform. The first column in the Radon transform corresponds to a projection at 0º
that is integrating in the vertical direction. The centermost column corresponds to a
projection at 90º, which is integrating in the horizontal direction. The projection at
90º has a wider profile than the projection at 0º due to the larger vertical semi-axis of
the outermost ellipse of the phantom.

4 Reconstruct the head phantom image from the projection data created in step 2 and
display the results.

I1 = iradon(R1,10);

I2 = iradon(R2,5);
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I3 = iradon(R3,2);

imshow(I1)

figure, imshow(I2)

figure, imshow(I3)

The following figure shows the results of all three reconstructions. Notice how
image I1, which was reconstructed from only 18 projections, is the least accurate
reconstruction. Image I2, which was reconstructed from 36 projections, is better, but
it is still not clear enough to discern clearly the small ellipses in the lower portion of
the image. I3, reconstructed using 90 projections, most closely resembles the original
image. Notice that when the number of projections is relatively small (as in I1 and
I2), the reconstruction can include some artifacts from the back projection.

Inverse Radon Transforms of the Shepp-Logan Head Phantom
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Fan-Beam Projection Data

In this section...

“Fan-Beam Projection Data Definition” on page 9-35
“Computing Fan-Beam Projection Data” on page 9-36
“Reconstructing an Image from Fan-Beam Projection Data” on page 9-38
“Reconstruct Image using Inverse Fanbeam Projection” on page 9-39

Note For information about creating projection data from line integrals along parallel
paths, see “Radon Transform” on page 9-19. To convert fan-beam projection data to
parallel-beam projection data, use the fan2para function.

Fan-Beam Projection Data Definition

The fanbeam function computes projections of an image matrix along specified
directions. A projection of a two-dimensional function f(x,y) is a set of line integrals. The
fanbeam function computes the line integrals along paths that radiate from a single
source, forming a fan shape. To represent an image, the fanbeam function takes multiple
projections of the image from different angles by rotating the source around the center of
the image. The following figure shows a single fan-beam projection at a specified rotation
angle.
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Fan-Beam Projection at Rotation Angle Theta

Computing Fan-Beam Projection Data

To compute fan-beam projection data, use the fanbeam function. You specify as
arguments an image and the distance between the vertex of the fan-beam projections and
the center of rotation (the center pixel in the image). The fanbeam function determines
the number of beams, based on the size of the image and the settings of fanbeam
parameters.

The FanSensorGeometry parameter specifies how sensors are aligned. If you specify
the value 'arc' for FanSensorGeometry (the default), fanbeam positions the sensors
along an arc, spacing the sensors at 1 degree intervals. Using the FanSensorSpacing
parameter, you can control the distance between sensors by specifying the angle between
each beam. If you specify the value 'line' for FanSensorGeometry parameter,
fanbeam position sensors along a straight line, rather than an arc. With 'line'
geometry, the FanSensorSpacing parameter specifies the distance between the sensors,
in pixels, along the x´ axis.

fanbeam takes projections at different angles by rotating the source around the center
pixel at 1 degree intervals. Using the FanRotationIncrement parameter you can
specify a different rotation angle increment.

The following figures illustrate both these geometries. The first figure illustrates
geometry used by the fanbeam function when FanSensorGeometry is set to 'arc' (the



 Fan-Beam Projection Data

9-37

default). Note how you specify the distance between sensors by specifying the angular
spacing of the beams.

Fan-Beam Projection with Arc Geometry

The following figure illustrates the geometry used by the fanbeam function when
FanSensorGeometry is set to 'line'. In this figure, note how you specify the position
of the sensors by specifying the distance between them in pixels along the x´ axis.
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Reconstructing an Image from Fan-Beam Projection Data

To reconstruct an image from fan-beam projection data, use the ifanbeam function. With
this function, you specify as arguments the projection data and the distance between the
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vertex of the fan-beam projections and the center of rotation when the projection data
was created. For example, this code recreates the image I from the projection data P and
distance D.

I = ifanbeam(P,D);

By default, the ifanbeam function assumes that the fan-beam projection data was
created using the arc fan sensor geometry, with beams spaced at 1 degree angles and
projections taken at 1 degree increments over a full 360 degree range. As with the
fanbeam function, you can use ifanbeam parameters to specify other values for these
characteristics of the projection data. Use the same values for these parameters that
were used when the projection data was created. For more information about these
parameters, see “Computing Fan-Beam Projection Data” on page 9-36.

The ifanbeam function converts the fan-beam projection data to parallel-beam projection
data with the fan2para function, and then calls the iradon function to perform
the image reconstruction. For this reason, the ifanfeam function supports certain
iradon parameters, which it passes to the iradon function. See “The Inverse Radon
Transformation” on page 9-29 for more information about the iradon function.

Reconstruct Image using Inverse Fanbeam Projection

This example shows how to use fanbeam and ifanbeam to form projections from a
sample image and then reconstruct the image from the projections.

Generate a test image and display it. The test image is the Shepp-Logan head phantom,
which can be generated by the phantom function. The phantom image illustrates many of
the qualities that are found in real-world tomographic imaging of human heads.

P = phantom(256);

imshow(P)
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Compute fan-beam projection data of the test image, using the FanSensorSpacing
parameter to vary the sensor spacing. The example uses the fanbeam arc geometry, so
you specify the spacing between sensors by specifying the angular spacing of the beams.
The first call spaces the beams at 2 degrees; the second at 1 degree; and the third at
0.25 degrees. In each call, the distance between the center of rotation and vertex of the
projections is constant at 250 pixels. In addition, fanbeam rotates the projection around
the center pixel at 1 degree increments.

D = 250;

dsensor1 = 2;
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F1 = fanbeam(P,D,'FanSensorSpacing',dsensor1);

dsensor2 = 1;

F2 = fanbeam(P,D,'FanSensorSpacing',dsensor2);

dsensor3 = 0.25;

[F3, sensor_pos3, fan_rot_angles3] = fanbeam(P,D,...

'FanSensorSpacing',dsensor3);

Plot the projection data F3 . Because fanbeam calculates projection data at rotation
angles from 0 to 360 degrees, the same patterns occur at an offset of 180 degrees. The
same features are being sampled from both sides.

figure, imagesc(fan_rot_angles3, sensor_pos3, F3)

colormap(hot); colorbar

xlabel('Fan Rotation Angle (degrees)')

ylabel('Fan Sensor Position (degrees)')



9 Transforms

9-42

Reconstruct the image from the fan-beam projection data using ifanbeam . In each
reconstruction, match the fan sensor spacing with the spacing used when the projection
data was created previously. The example uses the OutputSize parameter to constrain
the output size of each reconstruction to be the same as the size of the original image P
. In the output, note how the quality of the reconstruction gets better as the number of
beams in the projection increases. The first image, Ifan1 , was created using 2 degree
spacing of the beams; the second image, Ifan2 , was created using 1 degree spacing of
the beams; the third image, Ifan3 , was created using 0.25 spacing of the beams.

output_size = max(size(P));

Ifan1 = ifanbeam(F1,D, ...

       'FanSensorSpacing',dsensor1,'OutputSize',output_size);

figure, imshow(Ifan1)
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title('Ifan1')

Ifan2 = ifanbeam(F2,D, ...

       'FanSensorSpacing',dsensor2,'OutputSize',output_size);

figure, imshow(Ifan2)

title('Ifan2')

Ifan3 = ifanbeam(F3,D, ...

       'FanSensorSpacing',dsensor3,'OutputSize',output_size);

figure, imshow(Ifan3)

title('Ifan3')
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Morphological Operations

This chapter describes the Image Processing Toolbox morphological functions. You
can use these functions to perform common image processing tasks, such as contrast
enhancement, noise removal, thinning, skeletonization, filling, and segmentation.

• “Morphology Fundamentals: Dilation and Erosion” on page 10-2
• “Morphological Reconstruction” on page 10-16
• “Distance Transform” on page 10-33
• “Labeling and Measuring Objects in a Binary Image” on page 10-35
• “Lookup Table Operations” on page 10-40
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Morphology Fundamentals: Dilation and Erosion

In this section...

“Understanding Dilation and Erosion” on page 10-2
“Understanding Structuring Elements” on page 10-5
“Dilating an Image” on page 10-8
“Eroding an Image” on page 10-10
“Combining Dilation and Erosion” on page 10-11
“Dilation- and Erosion-Based Functions” on page 10-13

To see how morphological processing can solve an image processing problem, view the
Image Processing Toolbox watershed segmentation example.

Understanding Dilation and Erosion

Morphology is a broad set of image processing operations that process images based on
shapes. Morphological operations apply a structuring element to an input image, creating
an output image of the same size. In a morphological operation, the value of each pixel in
the output image is based on a comparison of the corresponding pixel in the input image
with its neighbors. By choosing the size and shape of the neighborhood, you can construct
a morphological operation that is sensitive to specific shapes in the input image.

The most basic morphological operations are dilation and erosion. Dilation adds pixels to
the boundaries of objects in an image, while erosion removes pixels on object boundaries.
The number of pixels added or removed from the objects in an image depends on the size
and shape of the structuring element used to process the image. In the morphological
dilation and erosion operations, the state of any given pixel in the output image is
determined by applying a rule to the corresponding pixel and its neighbors in the input
image. The rule used to process the pixels defines the operation as a dilation or an
erosion. This table lists the rules for both dilation and erosion.

Rules for Dilation and Erosion

Operation Rule

Dilation The value of the output pixel is the maximum value of all the pixels in
the input pixel's neighborhood. In a binary image, if any of the pixels
is set to the value 1, the output pixel is set to 1.
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Operation Rule

Erosion The value of the output pixel is the minimum value of all the pixels in
the input pixel's neighborhood. In a binary image, if any of the pixels
is set to 0, the output pixel is set to 0.

The following figure illustrates the dilation of a binary image. Note how the structuring
element defines the neighborhood of the pixel of interest, which is circled. (See
“Understanding Structuring Elements” on page 10-5 for more information.) The
dilation function applies the appropriate rule to the pixels in the neighborhood and
assigns a value to the corresponding pixel in the output image. In the figure, the
morphological dilation function sets the value of the output pixel to 1 because one of the
elements in the neighborhood defined by the structuring element is on.

Morphological Dilation of a Binary Image

The following figure illustrates this processing for a grayscale image. The figure shows
the processing of a particular pixel in the input image. Note how the function applies the
rule to the input pixel's neighborhood and uses the highest value of all the pixels in the
neighborhood as the value of the corresponding pixel in the output image.
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Morphological Dilation of a Grayscale Image

Processing Pixels at Image Borders (Padding Behavior)

Morphological functions position the origin of the structuring element, its center element,
over the pixel of interest in the input image. For pixels at the edge of an image, parts of
the neighborhood defined by the structuring element can extend past the border of the
image.

To process border pixels, the morphological functions assign a value to these undefined
pixels, as if the functions had padded the image with additional rows and columns. The
value of these padding pixels varies for dilation and erosion operations. The following
table describes the padding rules for dilation and erosion for both binary and grayscale
images.

Rules for Padding Images

Operation Rule

Dilation Pixels beyond the image border are assigned the minimum value
afforded by the data type.

For binary images, these pixels are assumed to be set to 0. For
grayscale images, the minimum value for uint8 images is 0.

Erosion Pixels beyond the image border are assigned the maximum value
afforded by the data type.

For binary images, these pixels are assumed to be set to 1. For
grayscale images, the maximum value for uint8 images is 255.
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Note By using the minimum value for dilation operations and the maximum value for
erosion operations, the toolbox avoids border effects, where regions near the borders
of the output image do not appear to be homogeneous with the rest of the image. For
example, if erosion padded with a minimum value, eroding an image would result in a
black border around the edge of the output image.

Understanding Structuring Elements

An essential part of the dilation and erosion operations is the structuring element used
to probe the input image. A structuring element is a matrix consisting of only 0's and
1's that can have any arbitrary shape and size. The pixels with values of 1 define the
neighborhood.

Two-dimensional, or flat, structuring elements are typically much smaller than the
image being processed. The center pixel of the structuring element, called the origin,
identifies the pixel of interest -- the pixel being processed. The pixels in the structuring
element containing 1's define the neighborhood of the structuring element. These pixels
are also considered in dilation or erosion processing.

Three-dimensional, or nonflat, structuring elements use 0's and 1's to define the extent of
the structuring element in the x- and y-planes and add height values to define the third
dimension.

The Origin of a Structuring Element

The morphological functions use this code to get the coordinates of the origin of
structuring elements of any size and dimension.

origin = floor((size(nhood)+1)/2)

(In this code nhood is the neighborhood defining the structuring element. Because
structuring elements are MATLAB objects, you cannot use the size of the STREL object
itself in this calculation. You must use the STREL getnhood method to retrieve the
neighborhood of the structuring element from the STREL object. For information about
other STREL object methods, see the strel function reference page.)

For example, the following illustrates a diamond-shaped structuring element.
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Origin of a Diamond-Shaped Structuring Element

Creating a Structuring Element

The toolbox dilation and erosion functions accept structuring element objects, called
STRELs. You use the strel function to create STRELs of any arbitrary size and shape.
The strel function also includes built-in support for many common shapes, such as
lines, diamonds, disks, periodic lines, and balls.

Note You typically choose a structuring element the same size and shape as the objects
you want to process in the input image. For example, to find lines in an image, create a
linear structuring element.

For example, this code creates a flat, diamond-shaped structuring element.

se = strel('diamond',3)

se =

 

Flat STREL object containing 25 neighbors.

Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:

     0     0     0     1     0     0     0

     0     0     1     1     1     0     0

     0     1     1     1     1     1     0

     1     1     1     1     1     1     1

     0     1     1     1     1     1     0

     0     0     1     1     1     0     0

     0     0     0     1     0     0     0
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Structuring Element Decomposition

To enhance performance, the strel function might break structuring elements into
smaller pieces, a technique known as structuring element decomposition.

For example, dilation by an 11-by-11 square structuring element can be accomplished by
dilating first with a 1-by-11 structuring element, and then with an 11-by-1 structuring
element. This results in a theoretical speed improvement of a factor of 5.5, although in
practice the actual speed improvement is somewhat less.

Structuring element decompositions used for the 'disk' and 'ball' shapes are
approximations; all other decompositions are exact. Decomposition is not used with an
arbitrary structuring element unless it is a flat structuring element whose neighborhood
matrix is all 1's.

To view the sequence of structuring elements used in a decomposition, use the STREL
getsequence method. The getsequence function returns an array of the structuring
elements that form the decomposition. For example, here are the structuring elements
created in the decomposition of a diamond-shaped structuring element.

sel = strel('diamond',4)

sel =

Flat STREL object containing 41 neighbors.

Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:

     0     0     0     0     1     0     0     0     0

     0     0     0     1     1     1     0     0     0

     0     0     1     1     1     1     1     0     0

     0     1     1     1     1     1     1     1     0

     1     1     1     1     1     1     1     1     1

     0     1     1     1     1     1     1     1     0

     0     0     1     1     1     1     1     0     0

     0     0     0     1     1     1     0     0     0

     0     0     0     0     1     0     0     0     0

seq = getsequence(sel)

seq =

3x1 array of STREL objects

seq(1)

ans =

Flat STREL object containing 5 neighbors.
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Neighborhood:

     0     1     0

     1     1     1

     0     1     0

seq(2)

ans =

Flat STREL object containing 4 neighbors.

Neighborhood:

     0     1     0

     1     0     1

     0     1     0

seq(3)

ans =

Flat STREL object containing 4 neighbors.

Neighborhood:

     0     0     1     0     0

     0     0     0     0     0

     1     0     0     0     1

     0     0     0     0     0

     0     0     1     0     0

Dilating an Image

To dilate an image, use the imdilate function. The imdilate function accepts two
primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)
• A structuring element object, returned by the strel function, or a binary matrix

defining the neighborhood of a structuring element

imdilate also accepts two optional arguments: SHAPE and PACKOPT. The SHAPE
argument affects the size of the output image. The PACKOPT argument identifies the
input image as packed binary. (Packing is a method of compressing binary images
that can speed up the processing of the image. See the bwpack reference page for
information.)

This example dilates a simple binary image containing one rectangular object.
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BW = zeros(9,10);

BW(4:6,4:7) = 1

BW = 

     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0

     0     0     0     1     1     1     1     0     0     0

     0     0     0     1     1     1     1     0     0     0

     0     0     0     1     1     1     1     0     0     0

     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0

     0     0     0     0     0     0     0     0     0     0

To expand all sides of the foreground component, the example uses a 3-by-3 square
structuring element object. (For more information about using the strel function, see
“Understanding Structuring Elements” on page 10-5.)

SE = strel('square',3)

SE =

 

Flat STREL object containing 3 neighbors.

Neighborhood:

     1     1     1

     1     1     1

     1     1     1

To dilate the image, pass the image BW and the structuring element SE to the imdilate
function. Note how dilation adds a rank of 1's to all sides of the foreground object.

BW2 = imdilate(BW,SE)
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Eroding an Image

To erode an image, use the imerode function. The imerode function accepts two
primary arguments:

• The input image to be processed (grayscale, binary, or packed binary image)
• A structuring element object, returned by the strel function, or a binary matrix

defining the neighborhood of a structuring element

imerode also accepts three optional arguments: SHAPE, PACKOPT, and M.

The SHAPE argument affects the size of the output image. The PACKOPT argument
identifies the input image as packed binary. If the image is packed binary, M identifies
the number of rows in the original image. (Packing is a method of compressing binary
images that can speed up the processing of the image. See the bwpack reference page for
more information.)

The following example erodes the binary image circbw.tif:

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element. The following code creates a diagonal structuring
element object. (For more information about using the strel function, see
“Understanding Structuring Elements” on page 10-5.)

SE = strel('arbitrary',eye(5));

SE=

 

Flat STREL object containing 5 neighbors.

Neighborhood:

     1     0     0     0     0

     0     1     0     0     0

     0     0     1     0     0

     0     0     0     1     0

     0     0     0     0     1

3 Call the imerode function, passing the image BW and the structuring element SE as
arguments.

BW2 = imerode(BW1,SE);
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Notice the diagonal streaks on the right side of the output image. These are due to
the shape of the structuring element.

imshow(BW1)

figure, imshow(BW2)

Combining Dilation and Erosion

Dilation and erosion are often used in combination to implement image processing
operations. For example, the definition of a morphological opening of an image is an
erosion followed by a dilation, using the same structuring element for both operations.
The related operation, morphological closing of an image, is the reverse: it consists of
dilation followed by an erosion with the same structuring element.

The following section uses imdilate and imerode to illustrate how to implement a
morphological opening. Note, however, that the toolbox already includes the imopen
function, which performs this processing. The toolbox includes functions that perform
many common morphological operations. See “Dilation- and Erosion-Based Functions” on
page 10-13 for a complete list.

Morphological Opening

You can use morphological opening to remove small objects from an image while
preserving the shape and size of larger objects in the image. For example, you can use
the imopen function to remove all the circuit lines from the original circuit image,
circbw.tif, creating an output image that contains only the rectangular shapes of the
microchips.
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To morphologically open the image, perform these steps:

1 Read the image into the MATLAB workspace.

BW1 = imread('circbw.tif');

2 Create a structuring element.

SE = strel('rectangle',[40 30]);

The structuring element should be large enough to remove the lines when you erode
the image, but not large enough to remove the rectangles. It should consist of all 1's,
so it removes everything but large contiguous patches of foreground pixels.

3 Erode the image with the structuring element.

BW2 = imerode(BW1,SE);

imshow(BW2)

This removes all the lines, but also shrinks the rectangles.

4 To restore the rectangles to their original sizes, dilate the eroded image using the
same structuring element, SE.

BW3 = imdilate(BW2,SE);

imshow(BW3)
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Dilation- and Erosion-Based Functions

This section describes two common image processing operations that are based on
dilation and erosion:

• Skeletonization
• Perimeter determination

This table lists other functions in the toolbox that perform common morphological
operations that are based on dilation and erosion. For more information about these
functions, see their reference pages.

Dilation- and Erosion-Based Functions

Function Morphological Definition

bwhitmiss Logical AND of an image, eroded with one structuring element, and the
image's complement, eroded with a second structuring element.

imbothat Subtracts the original image from a morphologically closed version of
the image. Can be used to find intensity troughs in an image.

imclose Dilates an image and then erodes the dilated image using the same
structuring element for both operations.

imopen Erodes an image and then dilates the eroded image using the same
structuring element for both operations.

imtophat Subtracts a morphologically opened image from the original image.
Can be used to enhance contrast in an image.
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Skeletonization

To reduce all objects in an image to lines, without changing the essential structure of the
image, use the bwmorph function. This process is known as skeletonization.

BW1 = imread('circbw.tif'); 

BW2 = bwmorph(BW1,'skel',Inf);

imshow(BW1)

figure, imshow(BW2)

Perimeter Determination

The bwperim function determines the perimeter pixels of the objects in a binary image. A
pixel is considered a perimeter pixel if it satisfies both of these criteria:

• The pixel is on.
• One (or more) of the pixels in its neighborhood is off.

For example, this code finds the perimeter pixels in a binary image of a circuit board.

BW1 = imread('circbw.tif'); 

BW2 = bwperim(BW1);

imshow(BW1)

figure, imshow(BW2)
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Morphological Reconstruction

In this section...

“Understanding Morphological Reconstruction” on page 10-16
“Understanding the Marker and Mask” on page 10-18
“Pixel Connectivity” on page 10-19
“Flood-Fill Operations” on page 10-22
“Finding Peaks and Valleys” on page 10-25

Understanding Morphological Reconstruction

Morphological reconstruction can be thought of conceptually as repeated dilations of
an image, called the marker image, until the contour of the marker image fits under a
second image, called the mask image. In morphological reconstruction, the peaks in the
marker image “spread out,” or dilate.

This figure illustrates this processing in 1-D. Each successive dilation is constrained to
lie underneath the mask. When further dilation ceases to change the image, processing
stops. The final dilation is the reconstructed image. (Note: the actual implementation
of this operation in the toolbox is done much more efficiently. See the imreconstruct
reference page for more details.) The figure shows the successive dilations of the marker.
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Repeated Dilations of Marker Image, Constrained by Mask
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Morphological reconstruction is based on morphological dilation, but note the following
unique properties:

• Processing is based on two images, a marker and a mask, rather than one image and
a structuring element.

• Processing is based on the concept of connectivity, rather than a structuring element.
• Processing repeats until stability; i.e., the image no longer changes.

Understanding the Marker and Mask

Morphological reconstruction processes one image, called the marker, based on the
characteristics of another image, called the mask. The high points, or peaks, in the
marker image specify where processing begins. The processing continues until the image
values stop changing.

To illustrate morphological reconstruction, consider this simple image. It contains two
primary regions, the blocks of pixels containing the values 14 and 18. The background is
primarily all set to 10, with some pixels set to 11.

To morphologically reconstruct this image, perform these steps:

1 Create a marker image. As with the structuring element in dilation and erosion,
the characteristics of the marker image determine the processing performed in
morphological reconstruction. The peaks in the marker image should identify the
location of objects in the mask image that you want to emphasize.

One way to create a marker image is to subtract a constant from the mask image,
using imsubtract.

marker = imsubtract(A,2)
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marker =

     8     8     8     8     8     8     8     8     8     8

     8    12    12    12     8     8     9     8     9     8

     8    12    12    12     8     8     8     9     8     8

     8    12    12    12     8     8     9     8     9     8

     8     8     8     8     8     8     8     8     8     8

     8     9     8     8     8    16    16    16     8     8

     8     8     8     9     8    16    16    16     8     8

     8     8     9     8     8    16    16    16     8     8

     8     9     8     9     8     8     8     8     8     8

     8     8     8     8     8     8     9     8     8     8

2 Call the imreconstruct function to morphologically reconstruct the image. In the
output image, note how all the intensity fluctuations except the intensity peak have
been removed.

recon = imreconstruct(marker, mask)

Pixel Connectivity

Morphological processing starts at the peaks in the marker image and spreads
throughout the rest of the image based on the connectivity of the pixels. Connectivity
defines which pixels are connected to other pixels. A set of pixels in a binary image that
form a connected group is called an object or a connected component.

Determining which pixels create a connected component depends on how pixel
connectivity is defined. For example, this binary image contains one foreground object
or two, depending on the connectivity. If the foreground is 4-connected, the image is all
one object — there is no distinction between a foreground object and the background.
However, if the foreground is 8-connected, the pixels set to 1 connect to form a closed loop
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and the image has two separate objects: the pixels in the loop and the pixels outside the
loop.

0     0     0     0     0     0     0     0

0     1     1     1     1     1     0     0

0     1     0     0     0     1     0     0

0     1     0     0     0     1     0     0

0     1     0     0     0     1     0     0

0     1     1     1     1     0     0     0

0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0

Defining Connectivity in an Image

The following table lists all the standard two- and three-dimensional connectivities
supported by the toolbox. See these sections for more information:

• “Choosing a Connectivity” on page 10-21
• “Specifying Custom Connectivities” on page 10-21

Supported Connectivities

Two-Dimensional
Connectivities

   

4-connected Pixels are connected if their edges touch. This
means that a pair of adjoining pixels are part
of the same object only if they are both on and
are connected along the horizontal or vertical
direction.

8-connected Pixels are connected if their edges or corners
touch. This means that if two adjoining pixels
are on, they are part of the same object,
regardless of whether they are connected along
the horizontal, vertical, or diagonal direction.

Three-Dimensional
Connectivities

   



 Morphological Reconstruction

10-21

6-connected Pixels are connected if their faces touch.

18-connected Pixels are connected if their faces or edges
touch.

26-connected Pixels are connected if their faces, edges, or
corners touch.

Choosing a Connectivity

The type of neighborhood you choose affects the number of objects found in an image
and the boundaries of those objects. For this reason, the results of many morphology
operations often differ depending upon the type of connectivity you specify.

For example, if you specify a 4-connected neighborhood, this binary image contains two
objects; if you specify an 8-connected neighborhood, the image has one object.

0     0     0     0     0     0

0     1     1     0     0     0

0     1     1     0     0     0

0     0     0     1     1     0

0     0     0     1     1     0

Specifying Custom Connectivities

You can also define custom neighborhoods by specifying a 3-by-3-by-...-by-3 array of 0's
and 1's. The 1-valued elements define the connectivity of the neighborhood relative to the
center element.

For example, this array defines a “North/South” connectivity which can be used to break
up an image into independent columns.
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CONN = [ 0 1 0; 0 1 0; 0 1 0 ]

CONN =

     0     1     0

     0     1     0

     0     1     0

Note Connectivity arrays must be symmetric about their center element. Also, you can
use a 2-D connectivity array with a 3-D image; the connectivity affects each "page" in the
3-D image.

Flood-Fill Operations

The imfill function performs a flood-fill operation on binary and grayscale images. For
binary images, imfill changes connected background pixels (0's) to foreground pixels
(1's), stopping when it reaches object boundaries. For grayscale images, imfill brings
the intensity values of dark areas that are surrounded by lighter areas up to the same
intensity level as surrounding pixels. (In effect, imfill removes regional minima that
are not connected to the image border. See “Finding Areas of High or Low Intensity” on
page 10-26 for more information.) This operation can be useful in removing irrelevant
artifacts from images. See these additional topics:

• “Specifying Connectivity” on page 10-22
• “Specifying the Starting Point” on page 10-23
• “Filling Holes” on page 10-24

Specifying Connectivity

For both binary and grayscale images, the boundary of the fill operation is determined by
the connectivity you specify.

Note imfill differs from the other object-based operations in that it operates on
background pixels. When you specify connectivity with imfill, you are specifying the
connectivity of the background, not the foreground.

The implications of connectivity can be illustrated with this matrix.

BW = logical([0     0     0     0     0     0     0     0;
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              0     1     1     1     1     1     0     0;

              0     1     0     0     0     1     0     0;

              0     1     0     0     0     1     0     0;

              0     1     0     0     0     1     0     0;

              0     1     1     1     1     0     0     0;

              0     0     0     0     0     0     0     0;

              0     0     0     0     0     0     0     0]);

If the background is 4-connected, this binary image contains two separate background
elements (the part inside the loop and the part outside). If the background is 8-connected,
the pixels connect diagonally, and there is only one background element.

Specifying the Starting Point

For binary images, you can specify the starting point of the fill operation by passing in
the location subscript or by using imfill in interactive mode, selecting starting pixels
with a mouse. See the reference page for imfill for more information about using
imfill interactively.

For example, if you call imfill, specifying the pixel BW(4,3) as the starting point,
imfill only fills the inside of the loop because, by default, the background is 4-
connected.

imfill(BW,[4 3])

ans =

    0     0     0     0     0     0     0     0

    0     1     1     1     1     1     0     0

    0     1     1     1     1     1     0     0

    0     1     1     1     1     1     0     0

    0     1     1     1     1     1     0     0

    0     1     1     1     1     0     0     0

    0     0     0     0     0     0     0     0

    0     0     0     0     0     0     0     0

If you specify the same starting point, but use an 8-connected background connectivity,
imfill fills the entire image.

imfill(BW,[4 3],8)

ans =

    1     1     1     1     1     1     1     1

    1     1     1     1     1     1     1     1
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    1     1     1     1     1     1     1     1

    1     1     1     1     1     1     1     1

    1     1     1     1     1     1     1     1

    1     1     1     1     1     1     1     1

    1     1     1     1     1     1     1     1

    1     1     1     1     1     1     1     1

Filling Holes

A common use of the flood-fill operation is to fill holes in images. For example, suppose
you have an image, binary or grayscale, in which the foreground objects represent
spheres. In the image, these objects should appear as disks, but instead are donut shaped
because of reflections in the original photograph. Before doing any further processing of
the image, you might want to first fill in the “donut holes” using imfill.

Because the use of flood-fill to fill holes is so common, imfill includes special syntax
to support it for both binary and grayscale images. In this syntax, you just specify the
argument 'holes'; you do not have to specify starting locations in each hole.

To illustrate, this example fills holes in a grayscale image of a spinal column.

[X,map] = imread('spine.tif');

I = ind2gray(X,map);

Ifill = imfill(I,'holes');

imshow(I);figure, imshow(Ifill)
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Finding Peaks and Valleys

Grayscale images can be thought of in three dimensions: the x- and y-axes represent pixel
positions and the z-axis represents the intensity of each pixel. In this interpretation,
the intensity values represent elevations, as in a topographical map. The areas of high
intensity and low intensity in an image, peaks and valleys in topographical terms, can be
important morphological features because they often mark relevant image objects.

For example, in an image of several spherical objects, points of high intensity could
represent the tops of the objects. Using morphological processing, these maxima can be
used to identify objects in an image.

This section covers these topics:

• “Terminology” on page 10-25
• “Understanding the Maxima and Minima Functions” on page 10-26
• “Finding Areas of High or Low Intensity” on page 10-26
• “Suppressing Minima and Maxima” on page 10-28
• “Imposing a Minimum” on page 10-30

Terminology

This section uses the following terms.

Term Definition

global maxima Highest regional maxima in the image. See the entry for
regional maxima in this table for more information.

global minima Lowest regional minima in the image. See the entry for
regional minima in this table for more information.

regional maxima Connected set of pixels of constant intensity from which
it is impossible to reach a point with higher intensity
without first descending; that is, a connected component
of pixels with the same intensity value, t, surrounded by
pixels that all have a value less than t.

regional minima Connected set of pixels of constant intensity from which
it is impossible to reach a point with lower intensity
without first ascending; that is, a connected component
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Term Definition

of pixels with the same intensity value, t, surrounded by
pixels that all have a value greater than t.

Understanding the Maxima and Minima Functions

An image can have multiple regional maxima or minima but only a single global
maximum or minimum. Determining image peaks or valleys can be used to create
marker images that are used in morphological reconstruction.

This figure illustrates the concept in 1-D.

Finding Areas of High or Low Intensity

The toolbox includes functions that you can use to find areas of high or low intensity in
an image:

• The imregionalmax and imregionalmin functions identify all regional minima or
maxima.

• The imextendedmax and imextendedmin functions identify regional minima or
maxima that are greater than or less than a specified threshold.

The functions accept a grayscale image as input and return a binary image as output. In
the output binary image, the regional minima or maxima are set to 1; all other pixels are
set to 0.

For example, this simple image contains two primary regional maxima, the blocks of
pixels containing the value 13 and 18, and several smaller maxima, set to 11.
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The binary image returned by imregionalmax pinpoints all these regional maxima.

B = imregionalmax(A)

You might want only to identify areas of the image where the change in intensity is
extreme; that is, the difference between the pixel and neighboring pixels is greater
than (or less than) a certain threshold. For example, to find only those regional maxima
in the sample image, A, that are at least two units higher than their neighbors, use
imextendedmax.

B = imextendedmax(A,2)



10 Morphological Operations

10-28

Suppressing Minima and Maxima

In an image, every small fluctuation in intensity represents a regional minimum or
maximum. You might only be interested in significant minima or maxima and not in
these smaller minima and maxima caused by background texture.

To remove the less significant minima and maxima but retain the significant minima
and maxima, use the imhmax or imhmin function. With these functions, you can specify
a contrast criteria or threshold level, h, that suppresses all maxima whose height is less
than h or whose minima are greater than h.

Note The imregionalmin, imregionalmax, imextendedmin, and imextendedmax
functions return a binary image that marks the locations of the regional minima and
maxima in an image. The imhmax and imhmin functions produce an altered image.

For example, this simple image contains two primary regional maxima, the blocks of
pixels containing the value 14 and 18, and several smaller maxima, set to 11.
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To eliminate all regional maxima except the two significant maxima, use imhmax,
specifying a threshold value of 2. Note that imhmax only affects the maxima; none of
the other pixel values are changed. The two significant maxima remain, although their
heights are reduced.

B = imhmax(A,2)

This figure takes the second row from the sample image to illustrate in 1-D how imhmax
changes the profile of the image.
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Imposing a Minimum

You can emphasize specific minima (dark objects) in an image using the imimposemin
function. The imimposemin function uses morphological reconstruction to eliminate all
minima from the image except the minima you specify.

To illustrate the process of imposing a minimum, this code creates a simple image
containing two primary regional minima and several other regional minima.

mask = uint8(10*ones(10,10));

mask(6:8,6:8) = 2;

mask(2:4,2:4) = 7;

mask(3,3) = 5;

mask(2,9) = 9;

mask(3,8) = 9;

mask(9,2) = 9;

mask(8,3) = 9

Creating a Marker Image

To obtain an image that emphasizes the two deepest minima and removes all others,
create a marker image that pinpoints the two minima of interest. You can create the
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marker image by explicitly setting certain pixels to specific values or by using other
morphological functions to extract the features you want to emphasize in the mask
image.

This example uses imextendedmin to get a binary image that shows the locations of the
two deepest minima.

marker = imextendedmin(mask,1)

Applying the Marker Image to the Mask

Now use imimposemin to create new minima in the mask image at the points specified
by the marker image. Note how imimposemin sets the values of pixels specified by
the marker image to the lowest value supported by the datatype (0 for uint8 values).
imimposemin also changes the values of all the other pixels in the image to eliminate
the other minima.

I = imimposemin(mask,marker)

I =

    11    11    11    11    11    11    11    11    11    11

    11     8     8     8    11    11    11    11    11    11

    11     8     0     8    11    11    11    11    11    11

    11     8     8     8    11    11    11    11    11    11

    11    11    11    11    11    11    11    11    11    11

    11    11    11    11    11     0     0     0    11    11

    11    11    11    11    11     0     0     0    11    11

    11    11    11    11    11     0     0     0    11    11

    11    11    11    11    11    11    11    11    11    11

    11    11    11    11    11    11    11    11    11    11

This figure illustrates in 1-D how imimposemin changes the profile of row 2 of the
image.
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Imposing a Minimum
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Distance Transform

The distance transform provides a metric or measure of the separation of points in the
image. The bwdist function calculates the distance between each pixel that is set to off
(0) and the nearest nonzero pixel for binary images.

The bwdist function supports several distance metrics, listed in the following table.

Distance Metrics

Distance Metric Description Illustration

Euclidean The Euclidean distance is the
straight-line distance between
two pixels.

Distance TransformImage

0 0 0

0

0

0

00

1 0.0

1.41 1.0 1.41

1.41

1.0

1.0

1.0

1.41

City Block The city block distance metric
measures the path between the
pixels based on a 4-connected
neighborhood. Pixels whose
edges touch are 1 unit apart;
pixels diagonally touching are 2
units apart.

Distance TransformImage

0 0 0

0

0

0

00

1 0

2 1 2

2

1

1

1

2

Chessboard The chessboard distance metric
measures the path between the
pixels based on an 8-connected
neighborhood. Pixels whose
edges or corners touch are 1
unit apart.

Distance TransformImage

0 0 0

0

0

0

00

1 0

1 1 1

1

1

1

1

1

Quasi-Euclidean The quasi-Euclidean metric
measures the total Euclidean
distance along a set of
horizontal, vertical, and
diagonal line segments.

Distance Transform

0

Image

0 00 0

0

0

0 0 0 0

000

000

1

00

00000

2.8 2.4 2.0 2.4 2.8

2.4

2.4

2.0 2.0

2.4

2.8 2.4 2.0 2.4 2.8

2.4

1.4

1.0

1.4

1.0

0

1.0

1.4

1.0

1.4

This example creates a binary image containing two intersecting circular objects.
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center1 = -10; 

center2 = -center1; 

dist = sqrt(2*(2*center1)^2); 

radius = dist/2 * 1.4; 

lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)]; 

[x,y] = meshgrid(lims(1):lims(2)); 

bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius; 

bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius; 

bw = bw1 | bw2; 

figure, imshow(bw), title('bw')

To compute the distance transform of the complement of the binary image, use the
bwdist function. In the image of the distance transform, note how the centers of the two
circular areas are white.

D = bwdist(~bw); 

figure, imshow(D,[]), title('Distance transform of ~bw')
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Labeling and Measuring Objects in a Binary Image

In this section...

“Understanding Connected-Component Labeling” on page 10-35
“Selecting Objects in a Binary Image” on page 10-37
“Finding the Area of the Foreground of a Binary Image” on page 10-38
“Finding the Euler Number of a Binary Image” on page 10-38

Understanding Connected-Component Labeling

A connected component in a binary image is a set of pixels that form a connected group.
For example, the binary image below has three connected components.

Connected component labeling is the process of identifying the connected components in
an image and assigning each one a unique label, like this:
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The matrix above is called a label matrix.

bwconncomp computes connected components, as shown in the example:

cc = bwconncomp(BW)

cc = 

    Connectivity: 8

       ImageSize: [8 9]

      NumObjects: 3

    PixelIdxList: {[6x1 double]  [6x1 double]  [5x1 double]}

The PixelIdxList identifies the list of pixels belonging to each connected component.

For visualizing connected components, it is useful to construct a label matrix. Use the
labelmatrix function. To inspect the results, display the label matrix as a pseudo-color
image using label2rgb.

Construct a label matrix:

labeled = labelmatrix(cc);

Create a pseudo-color image, where the label identifying each object in the label matrix
maps to a different color in the associated colormap matrix. Use label2rgb to choose
the colormap, the background color, and how objects in the label matrix map to colors in
the colormap:

RGB_label = label2rgb(labeled, @copper, 'c', 'shuffle');

imshow(RGB_label,'InitialMagnification','fit')
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Remarks

The functions bwlabel, bwlabeln, and bwconncomp all compute connected components
for binary images. bwconncomp replaces the use of bwlabel and bwlabeln. It uses
significantly less memory and is sometimes faster than the older functions.

Function Input Dimension Output Form Memory Use Connectivity

bwlabel 2-D Double-precision label
matrix

High 4 or 8

bwlabeln N-D Double-precision label
matrix

High Any

bwconncomp N-D CC struct Low Any

Selecting Objects in a Binary Image

You can use the bwselect function to select individual objects in a binary image. You
specify pixels in the input image, and bwselect returns a binary image that includes
only those objects from the input image that contain one of the specified pixels.

You can specify the pixels either noninteractively or with a mouse. For example, suppose
you want to select objects in the image displayed in the current axes. You type

BW2 = bwselect;

The cursor changes to crosshairs when it is over the image. Click the objects you want
to select; bwselect displays a small star over each pixel you click. When you are done,
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press Return. bwselect returns a binary image consisting of the objects you selected,
and removes the stars.

See the reference page for bwselect for more information.

Finding the Area of the Foreground of a Binary Image

The bwarea function returns the area of a binary image. The area is a measure of the
size of the foreground of the image. Roughly speaking, the area is the number of on
pixels in the image.

bwarea does not simply count the number of pixels set to on, however. Rather, bwarea
weights different pixel patterns unequally when computing the area. This weighting
compensates for the distortion that is inherent in representing a continuous image with
discrete pixels. For example, a diagonal line of 50 pixels is longer than a horizontal line
of 50 pixels. As a result of the weighting bwarea uses, the horizontal line has area of 50,
but the diagonal line has area of 62.5.

This example uses bwarea to determine the percentage area increase in circbw.tif
that results from a dilation operation.

BW = imread('circbw.tif'); 

SE = ones(5);

BW2 = imdilate(BW,SE);

increase = (bwarea(BW2) - bwarea(BW))/bwarea(BW)

increase =

    0.3456

See the reference page for bwarea for more information about the weighting pattern.

Finding the Euler Number of a Binary Image

The bweuler function returns the Euler number for a binary image. The Euler number
is a measure of the topology of an image. It is defined as the total number of objects
in the image minus the number of holes in those objects. You can use either 4- or 8-
connected neighborhoods.

This example computes the Euler number for the circuit image, using 8-connected
neighborhoods.

BW1 = imread('circbw.tif'); 
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eul = bweuler(BW1,8)

eul =

   -85

In this example, the Euler number is negative, indicating that the number of holes is
greater than the number of objects.
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Lookup Table Operations

In this section...

“Creating a Lookup Table” on page 10-40
“Using a Lookup Table” on page 10-40

Creating a Lookup Table

Certain binary image operations can be implemented most easily through lookup tables.
A lookup table is a column vector in which each element represents the value to return
for one possible combination of pixels in a neighborhood. To create lookup tables for
various operations, use the makelut function. makelut creates lookup tables for 2-by-2
and 3-by-3 neighborhoods. The following figure illustrates these types of neighborhoods.
Each neighborhood pixel is indicated by an x, and the center pixel is the one with a circle.

For a 2-by-2 neighborhood, there are 16 possible permutations of the pixels in the
neighborhood. Therefore, the lookup table for this operation is a 16-element vector. For
a 3-by-3 neighborhood, there are 512 permutations, so the lookup table is a 512-element
vector.

Note makelut and applylut support only 2-by-2 and 3-by-3 neighborhoods. Lookup
tables larger than 3-by-3 neighborhoods are not practical. For example, a lookup table for
a 4-by-4 neighborhood would have 65,536 entries.

Using a Lookup Table

Once you create a lookup table, you can use it to perform the desired operation by using
the applylut function.
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The example below illustrates using lookup table operations to modify an image
containing text. The example creates an anonymous function that returns 1 if three
or more pixels in the 3-by-3 neighborhood are 1; otherwise, it returns 0. The example
then calls makelut, passing in this function as the first argument, and using the second
argument to specify a 3-by-3 lookup table.

f = @(x) sum(x(:)) >= 3;

lut = makelut(f,3);

lut is returned as a 512-element vector of 1's and 0's. Each value is the output from the
function for one of the 512 possible permutations.

You then perform the operation using applylut.

BW1 = imread('text.png'); 

BW2 = applylut(BW1,lut);

imshow(BW1)

figure, imshow(BW2)

Image Before and After Applying Lookup Table Operation

For information about how applylut maps pixel combinations in the image to entries in
the lookup table, see the reference page for applylut.
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Analyzing and Enhancing Images

This chapter describes functions that support a range of standard image processing
operations for analyzing and enhancing images.

• “Pixel Values” on page 11-2
• “Intensity Profile of Images” on page 11-4
• “Contour Plot of Image Data” on page 11-8
• “Create Image Histogram” on page 11-11
• “Image Mean, Standard Deviation, and Correlation Coefficent” on page 11-14
• “Edge Detection” on page 11-15
• “Corner Detection” on page 11-18
• “Boundary Tracing in Images” on page 11-21
• “Hough Transform” on page 11-28
• “Quadtree Decomposition” on page 11-33
• “Texture Analysis” on page 11-35
• “Gray-Level Co-Occurrence Matrix (GLCM)” on page 11-38
• “Contrast Adjustment” on page 11-43
• “Noise Removal” on page 11-55
• “Image Segmentation” on page 11-61
• “Image Segmentation Using the Color Thesholder App” on page 11-62
• “Image Quality Metrics” on page 11-80
• “Image Segmentation Using the Image Segmenter App” on page 11-85
• “Image Region Properties” on page 11-99
• “Calculate Region Properties Using Image Region Analyzer” on page 11-100
• “Filter Images on Region Properties Using Image Region Analyzer App” on page

11-108
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Pixel Values

To determine the values of one or more pixels in an image and return the values in
a variable, use the impixel function. You can specify the pixels by passing their
coordinates as input arguments or you can select the pixels interactively using a mouse.
impixel returns the value of specified pixels in a variable in the MATLAB workspace.

Note You can also get pixel value information interactively using the Image Tool -- see
“Get Pixel Information in Image Viewer App” on page 4-30.

Determine Values of Individual Pixels in Images

This example shows how to use impixel interactively to get pixel values.

Display an image.

imshow canoe.tif

Call impixel. When called with no input arguments, impixel associates itself with the
image in the current axes.

pixel_values = impixel

Select the points you want to examine in the image by clicking the mouse. impixel
places a star at each point you select.

imshow canoe.tif
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When you are finished selecting points, press Return. impixel returns the pixel values
in an n-by-3 array, where n is the number of points you selected. The stars used to
indicate selected points disappear from the image.

pixel_values =

0.1294    0.1294    0.1294

0.5176         0         0

0.7765    0.6118    0.4196
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Intensity Profile of Images

The intensity profile of an image is the set of intensity values taken from regularly
spaced points along a line segment or multiline path in an image. To create an intensity
profile, use the improfile function. This function calculates and plots the intensity
values along a line segment or a multiline path in an image. You define the line segment
(or segments) by specifying their coordinates as input arguments or interactively using
a mouse. For points that do not fall on the center of a pixel, the intensity values are
interpolated. By default, improfile uses nearest-neighbor interpolation, but you can
specify a different method. For more information, see “Specify the Interpolation Method”
on page 6-3.) improfile works best with grayscale and truecolor images.

Create an Intensity Profile of an Image

This example shows how to create an intensity profile for an image interactively using
improfile.

Read an image and display it.

I = fitsread('solarspectra.fts');

imshow(I,[]);

Create the intensity profile. Call improfile with no arguments. The cursor changes
to crosshairs when you move it over the displayed image. Using the mouse, specify
line segments by clicking the endpoints. improfile draws a line between each two
consecutive points you select. When you finish specifying the path, press Return. In the
following figure, the line is shown in red.

improfile
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After you finish drawing the line over the image, improfile displays a plot of the data
along the line. Notice how the peaks and valleys in the plot correspond to the light and
dark bands in the image.

Create Intensity Profile of an RGB Image

This example shows how to plot the intensity values in an RGB image. For a single
line segment, improfile plots the intensity values in a two-dimensional view. For a
multiline path, improfile plots the intensity values in a three-dimensional view.

Display an RGB image using imshow.

imshow peppers.png
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Call improfile without any arguments and trace a line segment in the image
interactively. In the figure, the black line indicates a line segment drawn from top to
bottom. Double-click to end the line segment

improfile

RGB Image with Line Segment Drawn with improfile

The improfile function displays a plot of the intensity values along the line segment.
The plot includes separate lines for the red, green, and blue intensities. In the plot, notice
how low the blue values are at the beginning of the plot where the line traverses the
orange pepper.
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Plot of Intensity Values Along a Line Segment in an RGB Image
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Contour Plot of Image Data

A contour is a path in an image along which the image intensity values are equal
to a constant. You can create a contour plot of the data in a grayscale image using
imcontour. This function is similar to the contour function in MATLAB, but it
automatically sets up the axes so their orientation and aspect ratio match the image. To
label the levels of the contours, use the clabel function.

Create Contour Plot of Image Data

This example shows how to create a contour plot of an image.

Read grayscale image and display it. The example uses an example image of grains of
rice.

I = imread('rice.png');

imshow(I)
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Create a contour plot of the image using imcontour .

figure;

imcontour(I,3)
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Create Image Histogram

This example shows how to create a histogram for an image using the imhist function.
An image histogram is a chart that shows the distribution of intensities in an indexed
or grayscale image. The imhist function creates a histogram plot by defining n equally
spaced bins, each representing a range of data values, and then calculating the number
of pixels within each range. You can use the information in a histogram to choose an
appropriate enhancement operation. For example, if an image histogram shows that the
range of intensity values is small, you can use an intensity adjustment function to spread
the values across a wider range.

Read an image into the workspace and display it.

I = imread('rice.png');

imshow(I)
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Create the histogram. For the example image, showing grains of rice, imhist creates
a histogram with 64 bins. The imhist function displays the histogram, by default. The
histogram shows a peak at around 100, corresponding to the dark gray background in the
image.

figure;

imhist(I);
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Image Mean, Standard Deviation, and Correlation Coefficent

You can compute standard statistics of an image using the mean2, std2, and corr2
functions. mean2 and std2 compute the mean and standard deviation of the elements of
a matrix. corr2 computes the correlation coefficient between two matrices of the same
size.

These functions are two-dimensional versions of the mean, std, and corrcoef functions
described in the MATLAB Function Reference.
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Edge Detection

In an image, an edge is a curve that follows a path of rapid change in image intensity.
Edges are often associated with the boundaries of objects in a scene. Edge detection is
used to identify the edges in an image.

To find edges, you can use the edge function. This function looks for places in the image
where the intensity changes rapidly, using one of these two criteria:

• Places where the first derivative of the intensity is larger in magnitude than some
threshold

• Places where the second derivative of the intensity has a zero crossing

edge provides a number of derivative estimators, each of which implements one of the
definitions above. For some of these estimators, you can specify whether the operation
should be sensitive to horizontal edges, vertical edges, or both. edge returns a binary
image containing 1's where edges are found and 0's elsewhere.

The most powerful edge-detection method that edge provides is the Canny method. The
Canny method differs from the other edge-detection methods in that it uses two different
thresholds (to detect strong and weak edges), and includes the weak edges in the output
only if they are connected to strong edges. This method is therefore less likely than the
others to be fooled by noise, and more likely to detect true weak edges.

Detect Edges in Images

This example shows how to detect edges in an image using both the Canny edge detector
and the Sobel edge detector.

Read image and display it.

I = imread('coins.png');

imshow(I)
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Apply both the Sobel and Canny edge detectors to the image and display them for
comparison.

BW1 = edge(I,'sobel');

BW2 = edge(I,'canny');

figure;

imshowpair(BW1,BW2,'montage')

title('Sobel Filter                                   Canny Filter');



 Edge Detection

11-17



11 Analyzing and Enhancing Images

11-18

Corner Detection

Corners are the most reliable feature you can use to find the correspondence between
images. The following diagram shows three pixels—one inside the object, one on the edge
of the object, and one on the corner. If a pixel is inside an object, its surroundings (solid
square) correspond to the surroundings of its neighbor (dotted square). This is true for
neighboring pixels in all directions. If a pixel is on the edge of an object, its surroundings
differ from the surroundings of its neighbors in one direction, but correspond to the
surroundings of its neighbors in the other (perpendicular) direction. A corner pixel has
surroundings different from all of its neighbors in all directions.

The corner function identifies corners in an image. Two methods are available—the
Harris corner detection method (the default) and Shi and Tomasi's minimum eigenvalue
method. Both methods use algorithms that depend on the eigenvalues of the summation
of the squared difference matrix (SSD). The eigenvalues of an SSD matrix represent the
differences between the surroundings of a pixel and the surroundings of its neighbors.
The larger the difference between the surroundings of a pixel and those of its neighbors,
the larger the eigenvalues. The larger the eigenvalues, the more likely that a pixel
appears at a corner.

Find Corners in Images

This example shows how to locate corners with the corner function and adjust your
results by refining the maximum number of desired corners.

Create a checkerboard image.

I = checkerboard(40,2,2);
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Find the corners in the image.

C = corner(I);

Display the corners when the maximum number of desired corners is the default setting
of 200.

subplot(1,2,1);

imshow(I);

hold on

plot(C(:,1), C(:,2), '*', 'Color', 'c')

title('Maximum Corners = 200')

hold off

Display the corners when the maximum number of desired corners is 3.
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corners_max_specified = corner(I,3);

subplot(1,2,2);

imshow(I);

hold on

plot(corners_max_specified(:,1), corners_max_specified(:,2), ...

   '*', 'Color', 'm')

title('Maximum Corners = 3')

hold off
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Boundary Tracing in Images

The toolbox includes two functions you can use to find the boundaries of objects in a
binary image:

• bwtraceboundary

• bwboundaries

The bwtraceboundary function returns the row and column coordinates of all the pixels
on the border of an object in an image. You must specify the location of a border pixel on
the object as the starting point for the trace.

The bwboundaries function returns the row and column coordinates of border pixels of
all the objects in an image.

For both functions, the nonzero pixels in the binary image belong to an object, and pixels
with the value 0 (zero) constitute the background.

Trace Boundaries of Objects in Images

This example shows how to trace the border of an object in a binary image using
bwtraceboundary . Then, using bwboundaries , the example traces the borders of all
the objects in the image.

Read image and display it.

I = imread('coins.png');

imshow(I)
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Convert the image to a binary image. bwtraceboundary and bwboundaries only work
with binary images.

BW = im2bw(I);

imshow(BW)
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Determine the row and column coordinates of a pixel on the border of the object you want
to trace. bwboundary uses this point as the starting location for the boundary tracing.

dim = size(BW)

col = round(dim(2)/2)-90;

row = min(find(BW(:,col)))

dim =

   246   300

row =

    27



11 Analyzing and Enhancing Images

11-24

Call bwtraceboundary to trace the boundary from the specified point. As required
arguments, you must specify a binary image, the row and column coordinates of the
starting point, and the direction of the first step. The example specifies north ( 'N' ).

boundary = bwtraceboundary(BW,[row, col],'N');

Display the original grayscale image and use the coordinates returned by
bwtraceboundary to plot the border on the image.

imshow(I)

hold on;

plot(boundary(:,2),boundary(:,1),'g','LineWidth',3);
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To trace the boundaries of all the coins in the image, use the bwboundaries function.
By default, bwboundaries finds the boundaries of all objects in an image, including
objects inside other objects. In the binary image used in this example, some of the coins
contain black areas that bwboundaries interprets as separate objects. To ensure
that bwboundaries only traces the coins, use imfill to fill the area inside each coin.
bwboundaries returns a cell array, where each cell contains the row/column coordinates
for an object in the image.

BW_filled = imfill(BW,'holes');

boundaries = bwboundaries(BW_filled);

Plot the borders of all the coins on the original grayscale image using the coordinates
returned by bwboundaries .

for k=1:10

   b = boundaries{k};

   plot(b(:,2),b(:,1),'g','LineWidth',3);

end
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Select First Step and Direction for Tracing

For certain objects, you must take care when selecting the border pixel you choose as the
starting point and the direction you choose for the first step parameter (north, south,
etc.).

For example, if an object contains a hole and you select a pixel on a thin part of the object
as the starting pixel, you can trace the outside border of the object or the inside border
of the hole, depending on the direction you choose for the first step. For filled objects, the
direction you select for the first step parameter is not as important.

To illustrate, this figure shows the pixels traced when the starting pixel is on a thin part
of the object and the first step is set to north and south. The connectivity is set to 8 (the
default).
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Impact of First Step and Direction Parameters on Boundary Tracing
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Hough Transform

The Image Processing Toolbox supports functions that enable you to use the Hough
transform to detect lines in an image.

The hough function implements the Standard Hough Transform (SHT). The Hough
transform is designed to detect lines, using the parametric representation of a line:

rho = x*cos(theta) + y*sin(theta)

The variable rho is the distance from the origin to the line along a vector perpendicular
to the line. theta is the angle between the x-axis and this vector. The hough function
generates a parameter space matrix whose rows and columns correspond to these rho
and theta values, respectively.

After you compute the Hough transform, you can use the houghpeaks function to find
peak values in the parameter space. These peaks represent potential lines in the input
image.

After you identify the peaks in the Hough transform, you can use the houghlines
function to find the endpoints of the line segments corresponding to peaks in the Hough
transform. This function automatically fills in small gaps in the line segments.

Detect Lines in Images

The following example shows how to use the Hough function to detect lines in an image.

1 Read an image into the MATLAB workspace.

I  = imread('circuit.tif');

2 For this example, rotate and crop the image using the imrotate function.

rotI = imrotate(I,33,'crop');

fig1 = imshow(rotI);
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3 Find the edges in the image using the edge function.

BW = edge(rotI,'canny');

figure, imshow(BW);

4 Compute the Hough transform of the image using the hough function.

[H,theta,rho] = hough(BW);

5 Display the transform using the imshow function.

figure, imshow(imadjust(mat2gray(H)),[],'XData',theta,'YData',rho,...

        'InitialMagnification','fit');

xlabel('\theta (degrees)'), ylabel('\rho');

axis on, axis normal, hold on;

colormap(hot)
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6 Find the peaks in the Hough transform matrix, H, using the houghpeaks function.

P = houghpeaks(H,5,'threshold',ceil(0.3*max(H(:))));

7 Superimpose a plot on the image of the transform that identifies the peaks.

x = theta(P(:,2));

y = rho(P(:,1));

plot(x,y,'s','color','black');
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8 Find lines in the image using the houghlines function.

lines = houghlines(BW,theta,rho,P,'FillGap',5,'MinLength',7);

9 Create a plot that superimposes the lines on the original image.

figure, imshow(rotI), hold on

max_len = 0;

for k = 1:length(lines)

   xy = [lines(k).point1; lines(k).point2];

   plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

   % Plot beginnings and ends of lines

   plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');

   plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

   % Determine the endpoints of the longest line segment

   len = norm(lines(k).point1 - lines(k).point2);

   if ( len > max_len)

      max_len = len;

      xy_long = xy;
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   end

end

% highlight the longest line segment

plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','red');
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Quadtree Decomposition

Quadtree decomposition is an analysis technique that involves subdividing an image
into blocks that are more homogeneous than the image itself. This technique reveals
information about the structure of the image. It is also useful as the first step in adaptive
compression algorithms.

You can perform quadtree decomposition using the qtdecomp function. This function
works by dividing a square image into four equal-sized square blocks, and then testing
each block to see if it meets some criterion of homogeneity (e.g., if all the pixels in the
block are within a specific dynamic range). If a block meets the criterion, it is not divided
any further. If it does not meet the criterion, it is subdivided again into four blocks, and
the test criterion is applied to those blocks. This process is repeated iteratively until each
block meets the criterion. The result might have blocks of several different sizes.

Determine Image Homogeneity Using Quadtree Decomposition

To illustrate, this example performs quadtree decomposition on a 512-by-512 grayscale
image.

1 Read in the grayscale image.

I = imread('liftingbody.png');

2 Specify the test criteria used to determine the homogeneity of each block in the
decomposition. For example, the criterion might be this threshold calculation.

max(block(:)) - min(block(:)) <= 0.27

You can also supply qtdecomp with a function (rather than a threshold value) for
deciding whether to split blocks; for example, you might base the decision on the
variance of the block. See the reference page for qtdecomp for more information.

3 Perform this quadtree decomposition by calling the qtdecomp function, specifying
the image and the threshold value as arguments.

S = qtdecomp(I,0.27)

You specify the threshold as a value between 0 and 1, regardless of the class of I. If
I is uint8, qtdecomp multiplies the threshold value by 255 to determine the actual
threshold to use. If I is uint16, qtdecomp multiplies the threshold value by 65535.
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qtdecomp first divides the image into four 256-by-256 blocks and applies the test
criterion to each block. If a block does not meet the criterion, qtdecomp subdivides it and
applies the test criterion to each block. qtdecomp continues to subdivide blocks until all
blocks meet the criterion. Blocks can be as small as 1-by-1, unless you specify otherwise.

qtdecomp returns S as a sparse matrix, the same size as I. The nonzero elements of S
represent the upper left corners of the blocks; the value of each nonzero element indicates
the block size.

The following figure shows the original image and a representation of its quadtree
decomposition. (To see how this representation was created, see the example on the
qtdecomp reference page.) Each black square represents a homogeneous block, and the
white lines represent the boundaries between blocks. Notice how the blocks are smaller
in areas corresponding to large changes in intensity in the image.

Image and a Representation of Its Quadtree Decomposition
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Texture Analysis

Texture analysis refers to the characterization of regions in an image by their texture
content. Texture analysis attempts to quantify intuitive qualities described by terms
such as rough, smooth, silky, or bumpy as a function of the spatial variation in pixel
intensities. In this sense, the roughness or bumpiness refers to variations in the intensity
values, or gray levels. Texture analysis is used in a variety of applications, including
remote sensing, automated inspection, and medical image processing. Texture analysis
can be used to find the texture boundaries, called texture segmentation. Texture analysis
can be helpful when objects in an image are more characterized by their texture than by
intensity, and traditional thresholding techniques cannot be used effectively.

The toolbox includes several texture analysis functions that filter an image using
standard statistical measures. These statistics can characterize the texture of an image
because they provide information about the local variability of the intensity values of
pixels in an image. For example, in areas with smooth texture, the range of values in the
neighborhood around a pixel will be a small value; in areas of rough texture, the range
will be larger. Similarly, calculating the standard deviation of pixels in a neighborhood
can indicate the degree of variability of pixel values in that region. The following table
lists these functions.

Function Description

rangefilt Calculates the local range of an image.
stdfilt Calculates the local standard deviation of an image.
entropyfilt Calculates the local entropy of a grayscale image. Entropy is a

statistical measure of randomness.

Understanding How Texture Filter Functions Work

The functions all operate in a similar way: they define a neighborhood around the pixel of
interest, calculate the statistic for that neighborhood, and use that value as the value of
the pixel of interest in the output image.

This example shows how the rangefilt function operates on a simple array.

A = [ 1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20 ]

A =
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     1     2     3     4     5

     6     7     8     9    10

    11    12    13    14    15

    16    17    18    19    20

B = rangefilt(A)

B =

     6     7     7     7     6

    11    12    12    12    11

    11    12    12    12    11

     6     7     7     7     6

The following figure shows how the value of element B(2,4) was calculated from
A(2,4). By default, the rangefilt function uses a 3-by-3 neighborhood but you can
specify neighborhoods of different shapes and sizes.

Determining Pixel Values in Range Filtered Output Image

The stdfilt and entropyfilt functions operate similarly, defining a neighborhood
around the pixel of interest and calculating the statistic for the neighborhood to
determine the pixel value in the output image. The stdfilt function calculates the
standard deviation of all the values in the neighborhood.

The entropyfilt function calculates the entropy of the neighborhood and assigns that
value to the output pixel. Note that, by default, the entropyfilt function defines a
9-by-9 neighborhood around the pixel of interest. To calculate the entropy of an entire
image, use the entropy function.
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Detect Regions of Texture in Images

This example shows how to detect regions of texture in an image using the texture filter
functions.

Read in the image and display it.

I = imread('eight.tif');

imshow(I)

In the figure, the background is smooth; there is very little variation in the gray-level
values. In the foreground, the surface contours of the coins exhibit more texture. In this
image, foreground pixels have more variability and thus higher range values.

Filter the image with the rangefilt function and display the results. Range filtering
makes the edges and contours of the coins visible.

K = rangefilt(I);

figure, imshow(K)
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Gray-Level Co-Occurrence Matrix (GLCM)

A statistical method of examining texture that considers the spatial relationship of
pixels is the gray-level co-occurrence matrix (GLCM), also known as the gray-level
spatial dependence matrix. The GLCM functions characterize the texture of an image
by calculating how often pairs of pixel with specific values and in a specified spatial
relationship occur in an image, creating a GLCM, and then extracting statistical
measures from this matrix. (The texture filter functions, described in “Texture Analysis”
on page 11-35 cannot provide information about shape, i.e., the spatial relationships of
pixels in an image.)

After you create the GLCMs, you can derive several statistics from them using the
graycoprops function. These statistics provide information about the texture of an
image. The following table lists the statistics.

Statistic Description

Contrast Measures the local variations in the gray-level co-occurrence matrix.
Correlation Measures the joint probability occurrence of the specified pixel pairs.
Energy Provides the sum of squared elements in the GLCM. Also known as

uniformity or the angular second moment.
Homogeneity Measures the closeness of the distribution of elements in the GLCM

to the GLCM diagonal.

Understanding a Gray-Level Co-Occurrence Matrix

To create a GLCM, use the graycomatrix function. The graycomatrix function
creates a gray-level co-occurrence matrix (GLCM) by calculating how often a pixel with
the intensity (gray-level) value i occurs in a specific spatial relationship to a pixel with
the value j. By default, the spatial relationship is defined as the pixel of interest and
the pixel to its immediate right (horizontally adjacent), but you can specify other spatial
relationships between the two pixels. Each element (i,j) in the resultant glcm is simply
the sum of the number of times that the pixel with value i occurred in the specified
spatial relationship to a pixel with value j in the input image.

The number of gray levels in the image determines the size of the GLCM. By default,
graycomatrix uses scaling to reduce the number of intensity values in an image to
eight, but you can use the NumLevels and the GrayLimits parameters to control this
scaling of gray levels. See the graycomatrix reference page for more information.



 Gray-Level Co-Occurrence Matrix (GLCM)

11-39

The gray-level co-occurrence matrix can reveal certain properties about the spatial
distribution of the gray levels in the texture image. For example, if most of the entries
in the GLCM are concentrated along the diagonal, the texture is coarse with respect to
the specified offset. You can also derive several statistical measures from the GLCM.
See “Derive Statistics from GLCM and Plot Correlation” on page 11-40 for more
information.

To illustrate, the following figure shows how graycomatrix calculates the first three
values in a GLCM. In the output GLCM, element (1,1) contains the value 1 because there
is only one instance in the input image where two horizontally adjacent pixels have the
values 1 and 1, respectively. glcm(1,2) contains the value 2 because there are two
instances where two horizontally adjacent pixels have the values 1 and 2. Element (1,3)
in the GLCM has the value 0 because there are no instances of two horizontally adjacent
pixels with the values 1 and 3. graycomatrix continues processing the input image,
scanning the image for other pixel pairs (i,j) and recording the sums in the corresponding
elements of the GLCM.

Process Used to Create the GLCM

Specify Offset Used in GLCM Calculation

By default, the graycomatrix function creates a single GLCM, with the spatial
relationship, or offset, defined as two horizontally adjacent pixels. However, a single
GLCM might not be enough to describe the textural features of the input image. For
example, a single horizontal offset might not be sensitive to texture with a vertical
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orientation. For this reason, graycomatrix can create multiple GLCMs for a single
input image.

To create multiple GLCMs, specify an array of offsets to the graycomatrix function.
These offsets define pixel relationships of varying direction and distance. For example,
you can define an array of offsets that specify four directions (horizontal, vertical, and
two diagonals) and four distances. In this case, the input image is represented by 16
GLCMs. When you calculate statistics from these GLCMs, you can take the average.

You specify these offsets as a p-by-2 array of integers. Each row in the array is a two-
element vector, [row_offset, col_offset], that specifies one offset. row_offset
is the number of rows between the pixel of interest and its neighbor. col_offset is
the number of columns between the pixel of interest and its neighbor. This example
creates an offset that specifies four directions and 4 distances for each direction. For
more information about specifying offsets, see the graycomatrix reference page.

offsets = [ 0 1; 0 2; 0 3; 0 4;...

           -1 1; -2 2; -3 3; -4 4;...

           -1 0; -2 0; -3 0; -4 0;...

           -1 -1; -2 -2; -3 -3; -4 -4];

The figure illustrates the spatial relationships of pixels that are defined by this array of
offsets, where D represents the distance from the pixel of interest.

Derive Statistics from GLCM and Plot Correlation

This example shows how to create a set of GLCMs and derive statistics from them. The
example also illustrates how the statistics returned by graycoprops have a direct
relationship to the original input image.
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Read grayscale image and display it. The example converts the truecolor image to a
grayscale image and then rotates it 90° for this example.

circuitBoard = rot90(rgb2gray(imread('board.tif')));

imshow(circuitBoard)

Define offsets of varying direction and distance. Because the image contains objects of a
variety of shapes and sizes that are arranged in horizontal and vertical directions, the
example specifies a set of horizontal offsets that only vary in distance.

offsets0 = [zeros(40,1) (1:40)'];

Create the GLCMs. Call the graycomatrix function specifying the offsets.

glcms = graycomatrix(circuitBoard,'Offset',offsets0)

Derive statistics from the GLCMs using the graycoprops function. The example
calculates the contrast and correlation.

stats = graycoprops(glcms,'Contrast Correlation');

Plot correlation as a function of offset.

figure, plot([stats.Correlation]);

title('Texture Correlation as a function of offset');

xlabel('Horizontal Offset')

ylabel('Correlation')
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The plot contains peaks at offsets 7, 15, 23, and 30. If you examine the input image
closely, you can see that certain vertical elements in the image have a periodic pattern
that repeats every seven pixels. The following figure shows the upper left corner of the
image and points out where this pattern occurs.
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Contrast Adjustment

In this section...

“Adjust Intensity Values to Specified Range” on page 11-44
“Adjust Image Intensity Values Using Histogram Equalization” on page 11-48
“Adjust Contrast Using Contrast-Limited Adaptive Histogram Equalization (CLAHE)”
on page 11-49
“Enhance Color Separation Using Decorrelation Stretching” on page 11-50

Image enhancement techniques are used to improve an image, where “improve” is
sometimes defined objectively (e.g., increase the signal-to-noise ratio), and sometimes
subjectively (e.g., make certain features easier to see by modifying the colors or
intensities). Intensity adjustment is an image enhancement technique that maps an
image's intensity values to a new range.

To illustrate, this figure shows a low-contrast image with its histogram. Notice in the
histogram of the image how all the values gather in the center of the range. If you remap
the data values to fill the entire intensity range [0, 255], you can increase the contrast of
the image.

The functions described in this section apply primarily to grayscale images. However,
some of these functions can be applied to color images as well. For information about
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how these functions work with color images, see the reference pages for the individual
functions.

Adjust Intensity Values to Specified Range

You can adjust the intensity values in an image using the imadjust function, where you
specify the range of intensity values in the output image.

For example, this code increases the contrast in a low-contrast grayscale image by
remapping the data values to fill the entire intensity range [0, 255].

I = imread('pout.tif');

J = imadjust(I);

imshow(J)

figure, imhist(J,64)

This figure displays the adjusted image and its histogram. Notice the increased contrast
in the image, and that the histogram now fills the entire range.

Adjusted Image and Its Histogram
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Specify Adjustment Limits as Range

You can optionally specify the range of the input values and the output values using
imadjust. You specify these ranges in two vectors that you pass to imadjust as
arguments. The first vector specifies the low- and high-intensity values that you want to
map. The second vector specifies the scale over which you want to map them.

Note Note that you must specify the intensities as values between 0 and 1 regardless of
the class of I. If I is uint8, the values you supply are multiplied by 255 to determine
the actual values to use; if I is uint16, the values are multiplied by 65535. To learn
about an alternative way to set these limits automatically, see “Set Image Intensity
Adjustment Limits Automatically” on page 11-46.

For example, you can decrease the contrast of an image by narrowing the range of the
data. In the example below, the man's coat is too dark to reveal any detail. imadjust
maps the range [0,51] in the uint8 input image to [128,255] in the output image.
This brightens the image considerably, and also widens the dynamic range of the dark
portions of the original image, making it much easier to see the details in the coat. Note,
however, that because all values above 51 in the original image are mapped to 255
(white) in the adjusted image, the adjusted image appears washed out.

I = imread('cameraman.tif');

J = imadjust(I,[0 0.2],[0.5 1]);

imshow(I)

figure, imshow(J)

Image After Remapping and Widening the Dynamic Range
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Set Image Intensity Adjustment Limits Automatically

To use imadjust, you must typically perform two steps:

1 View the histogram of the image to determine the intensity value limits.
2 Specify these limits as a fraction between 0.0 and 1.0 so that you can pass them to

imadjust in the [low_in high_in] vector.

For a more convenient way to specify these limits, use the stretchlim function. (The
imadjust function uses stretchlim for its simplest syntax, imadjust(I).)

This function calculates the histogram of the image and determines the adjustment
limits automatically. The stretchlim function returns these values as fractions in
a vector that you can pass as the [low_in high_in] argument to imadjust; for
example:

I = imread('rice.png');

J = imadjust(I,stretchlim(I),[0 1]);

By default, stretchlim uses the intensity values that represent the bottom 1% (0.01)
and the top 1% (0.99) of the range as the adjustment limits. By trimming the extremes
at both ends of the intensity range, stretchlim makes more room in the adjusted
dynamic range for the remaining intensities. But you can specify other range limits as an
argument to stretchlim. See the stretchlim reference page for more information.

Gamma Correction

imadjust maps low to bottom, and high to top. By default, the values between low
and high are mapped linearly to values between bottom and top. For example, the
value halfway between low and high corresponds to the value halfway between bottom
and top.

imadjust can accept an additional argument that specifies the gamma correction factor.
Depending on the value of gamma, the mapping between values in the input and output
images might be nonlinear. For example, the value halfway between low and high might
map to a value either greater than or less than the value halfway between bottom and
top.

Gamma can be any value between 0 and infinity. If gamma is 1 (the default), the
mapping is linear. If gamma is less than 1, the mapping is weighted toward higher
(brighter) output values. If gamma is greater than 1, the mapping is weighted toward
lower (darker) output values.
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The figure below illustrates this relationship. The three transformation curves show
how values are mapped when gamma is less than, equal to, and greater than 1. (In
each graph, the x-axis represents the intensity values in the input image, and the y-axis
represents the intensity values in the output image.)

Plots Showing Three Different Gamma Correction Settings

The example below illustrates gamma correction. Notice that in the call to imadjust, the
data ranges of the input and output images are specified as empty matrices. When you
specify an empty matrix, imadjust uses the default range of [0,1]. In the example, both
ranges are left empty; this means that gamma correction is applied without any other
adjustment of the data.

[X,map] = imread('forest.tif');

I = ind2gray(X,map);

J = imadjust(I,[],[],0.5);

imshow(I)

figure, imshow(J)

Image Before and After Applying Gamma Correction
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Adjust Image Intensity Values Using Histogram Equalization

The process of adjusting intensity values can be done automatically by the histeq
function. histeq performs histogram equalization, which involves transforming the
intensity values so that the histogram of the output image approximately matches a
specified histogram. (By default, histeq tries to match a flat histogram with 64 bins, but
you can specify a different histogram instead; see the reference page for histeq.)

This example illustrates using histeq to adjust a grayscale image. The original image
has low contrast, with most values in the middle of the intensity range. histeq produces
an output image having values evenly distributed throughout the range.

I = imread('pout.tif');

J = histeq(I);

imshow(J)

figure, imhist(J,64)

Image After Histogram Equalization with Its Histogram

histeq can return a 1-by-256 vector that shows, for each possible input value, the
resulting output value. (The values in this vector are in the range [0,1], regardless of
the class of the input image.) You can plot this data to get the transformation curve. For
example:

I = imread('pout.tif');
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[J,T] = histeq(I);

figure,plot((0:255)/255,T);

Notice how this curve reflects the histograms in the previous figure, with the input
values mostly between 0.3 and 0.6, while the output values are distributed evenly
between 0 and 1.

Adjust Contrast Using Contrast-Limited Adaptive Histogram Equalization
(CLAHE)

As an alternative to using histeq, you can perform contrast-limited adaptive histogram
equalization (CLAHE) using the adapthisteq function. While histeq works on the
entire image, adapthisteq operates on small regions in the image, called tiles. Each
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tile's contrast is enhanced, so that the histogram of the output region approximately
matches a specified histogram. After performing the equalization, adapthisteq
combines neighboring tiles using bilinear interpolation to eliminate artificially induced
boundaries.

To avoid amplifying any noise that might be present in the image, you can use
adapthisteq optional parameters to limit the contrast, especially in homogeneous
areas.

To illustrate, this example uses adapthisteq to adjust the contrast in a grayscale
image. The original image has low contrast, with most values in the middle of the
intensity range. adapthisteq produces an output image having values evenly
distributed throughout the range.

I = imread('pout.tif');

J = adapthisteq(I);

imshow(J)

figure, imhist(J,64)

Image After CLAHE Equalization with Its Histogram

Enhance Color Separation Using Decorrelation Stretching

Decorrelation stretching enhances the color separation of an image with significant
band-to-band correlation. The exaggerated colors improve visual interpretation and
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make feature discrimination easier. You apply decorrelation stretching with the
decorrstretch function. See “Adding a Linear Contrast Stretch” on page 11-53 on
how to add an optional linear contrast stretch to the decorrelation stretch.

The number of color bands, NBANDS, in the image is usually three. But you can apply
decorrelation stretching regardless of the number of color bands.

The original color values of the image are mapped to a new set of color values with a
wider range. The color intensities of each pixel are transformed into the color eigenspace
of the NBANDS-by-NBANDS covariance or correlation matrix, stretched to equalize the
band variances, then transformed back to the original color bands.

To define the bandwise statistics, you can use the entire original image or, with the
subset option, any selected subset of it. See the decorrstretch reference page.

Simple Decorrelation Stretching

You can apply decorrelation and stretching operations on the library of images available
in the imdata folder. The library includes a LANDSAT image of the Little Colorado
River. In this example, you perform a simple decorrelation stretch on this image:

1 The image has seven bands, but just read in the three visible colors:

A = multibandread('littlecoriver.lan', [512, 512, 7], ...

'uint8=>uint8', 128, 'bil', 'ieee-le', ...

{'Band','Direct',[3 2 1]});

2 Then perform the decorrelation stretch:

B = decorrstretch(A);

3 Now view the results:

imshow(A)

figure, imshow(B) 

Compare the two images. The original has a strong violet (red-bluish) tint, while the
transformed image has a somewhat expanded color range.
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Little Colorado River Before (left) and After (right) Decorrelation Stretch

A color band scatterplot of the images shows how the bands are decorrelated and
equalized:

rA = A(:,:,1);

gA = A(:,:,2);

bA = A(:,:,3);

figure, plot3(rA(:),gA(:),bA(:),'.')

grid on

xlabel('Red (Band 3)')

ylabel('Green (Band 2)')

zlabel('Blue (Band 1)')

rB = B(:,:,1);

gB = B(:,:,2);

bB = B(:,:,3);

figure, plot3(rB(:),gB(:),bB(:),'.')

grid on

xlabel('Red (Band 3)')

ylabel('Green (Band 2)')

zlabel('Blue (Band 1)')
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Color Scatterplot Before (left) and After (right) Decorrelation Stretch

Adding a Linear Contrast Stretch

Now try the same transformation, but with a linear contrast stretch applied after the
decorrelation stretch:

imshow(A)

C = decorrstretch(A,'Tol',0.01);

figure, imshow(C)

Compare the transformed image to the original.
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Little Colorado River After Decorrelation Stretch Followed by Linear Contrast Stretch

Adding the linear contrast stretch enhances the resulting image by further expanding
the color range. In this case, the transformed color range is mapped within each band to
a normalized interval between 0.01 and 0.99, saturating 2%.

See the stretchlim function reference page for more about Tol. Without the Tol
option, decorrstretch applies no linear contrast stretch.

Note You can apply a linear contrast stretch as a separate operation after performing a
decorrelation stretch, using stretchlim and imadjust. This alternative, however, often
gives inferior results for uint8 and uint16 images, because the pixel values must be
clamped to [0 255] (or [0 65535]). The Tol option in decorrstretch circumvents
this limitation.
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Noise Removal

In this section...

“Remove Noise By Linear Filtering” on page 11-55
“Remove Noise Using Median Filtering” on page 11-55
“Remove Noise By Adaptive Filtering” on page 11-58

Digital images are prone to a variety of types of noise. Noise is the result of errors in
the image acquisition process that result in pixel values that do not reflect the true
intensities of the real scene. There are several ways that noise can be introduced into an
image, depending on how the image is created. For example:

• If the image is scanned from a photograph made on film, the film grain is a source
of noise. Noise can also be the result of damage to the film, or be introduced by the
scanner itself.

• If the image is acquired directly in a digital format, the mechanism for gathering the
data (such as a CCD detector) can introduce noise.

• Electronic transmission of image data can introduce noise.

To simulate the effects of some of the problems listed above, the toolbox provides the
imnoise function, which you can use to add various types of noise to an image. The
examples in this section use this function.

Remove Noise By Linear Filtering

You can use linear filtering to remove certain types of noise. Certain filters, such
as averaging or Gaussian filters, are appropriate for this purpose. For example, an
averaging filter is useful for removing grain noise from a photograph. Because each pixel
gets set to the average of the pixels in its neighborhood, local variations caused by grain
are reduced.

See “What Is Image Filtering in the Spatial Domain?” for more information about linear
filtering using imfilter.

Remove Noise Using Median Filtering

This example shows how to remove salt and pepper noise from an image using an
averaging filter and a median filter (medfilt2) to allow comparison of the results.
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Median filtering is similar to an averaging filter, in that each output pixel is set to
an average of the pixel values in the neighborhood of the corresponding input pixel.
However, with median filtering, the value of an output pixel is determined by the median
of the neighborhood pixels, rather than the mean. The median is much less sensitive
than the mean to extreme values (called outliers). Median filtering is therefore better
able to remove these outliers without reducing the sharpness of the image. Median
filtering is a specific case of order-statistic filtering, also known as rank filtering. For
information about order-statistic filtering, see the reference page for the ordfilt2
function.

Read image and display it.

I = imread('eight.tif');

imshow(I)

For this example, add salt and pepper noise to the image. This type of noise consists of
random pixels being set to black or white (the extremes of the data range).

J = imnoise(I,'salt & pepper',0.02);

figure, imshow(J)
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Filter the noisy image with an averaging filter and display the results. The example uses
a 3-by-3 neighborhood.

K = filter2(fspecial('average',3),J)/255;

figure, imshow(K)
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Now use a median filter to filter the noisy image and display the results. The example
uses a 3-by-3 neighborhood. Notice that medfilt2 does a better job of removing noise,
with less blurring of edges.

L = medfilt2(J,[3 3]);

figure, imshow(L)

Remove Noise By Adaptive Filtering

The wiener2 function applies a Wiener filter (a type of linear filter) to an image
adaptively, tailoring itself to the local image variance. Where the variance is large,
wiener2 performs little smoothing. Where the variance is small, wiener2 performs
more smoothing.

This approach often produces better results than linear filtering. The adaptive filter is
more selective than a comparable linear filter, preserving edges and other high-frequency
parts of an image. In addition, there are no design tasks; the wiener2 function handles
all preliminary computations and implements the filter for an input image. wiener2,
however, does require more computation time than linear filtering.

wiener2 works best when the noise is constant-power (“white”) additive noise, such as
Gaussian noise. The example below applies wiener2 to an image of Saturn that has had
Gaussian noise added.
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1 Read in an image. Because the image is a truecolor image, the example converts it to
grayscale.

RGB = imread('saturn.png');

I = rgb2gray(RGB);

2 The example then add Gaussian noise to the image and then displays the image.
Because the image is quite large, the figure only shows a portion of the image.

J = imnoise(I,'gaussian',0,0.025);

imshow(J)

Portion of the Image with Added Gaussian Noise
3 Remove the noise, using the wiener2 function. Again, the figure only shows a

portion of the image

K = wiener2(J,[5 5]);

figure, imshow(K)
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Portion of the Image with Noise Removed by Wiener Filter
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Image Segmentation

Image segmentation is the process of partitioning an image into parts or regions. This
division into parts is often based on the characteristics of the pixels in the image. For
example, one way to find regions in an image is to look for abrupt discontinuities in pixel
values, which typically indicate edges. These edges can define regions. Another method is
to divide the image into regions based on color values.
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Image Segmentation Using the Color Thesholder App

This example shows how to segment an image to create a binary mask image using
the Color Thresholder app. The example has several parts. The first part shows how
to open an image in the Color Thresholder. The next part of the example shows how
to use the color selection option to segment the image automatically. The next part
shows an iterative approach to thresholding using color component controls. In a typical
scenario, you perform an initial segmentation using color selection and then refine that
segmentation using color component controls. The last part of this example shows what
you can do after you complete the segmentation, such as creating a mask image, saving a
segmented version of the original image, and getting the MATLAB code used to perform
the segmentation.

In this section...

“Open Image in Color Thresholder App” on page 11-62
“Segment Image Using Color Selector” on page 11-67
“Segment Image Using Color Component Controls” on page 11-70
“Create an Image Mask” on page 11-74

Open Image in Color Thresholder App

This example shows how to open an image in the Color Thresholder app. When you first
open the app, you must choose the color space to use to represent the color components
of the image. Choose the color space where the colors you are interested in segmenting
appear near each other in the color model. You can always change the color space you
choose later, using New Color Space.

Read a color image into the MATLAB workspace and view it.

I = imread('peppers.png');

imshow(I)
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Open the Color Thresholder app. From the MATLAB Toolstrip, open the Apps tab and

under Image Processing and Computer Vision, click . You can also open the app
using the colorThresholder command.

Bring an image into the Color Thresholder app. Click Load Image. Since you have
already read the image into the workspace, select Load Image from Workspace.
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Select the variable that contains the image you read into the workspace in the Import
From Workspace dialog box and click OK.
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Choose the color space you want to represent color components in your image. When it
opens, the Color Thresholder app displays the Choose a color space dialog box. This
dialog box displays your image as it is represented in several popular color spaces: RGB,
HSV, YCbCr, and L*a*b*. Using the mouse, choose the color space. For this example,
choose the YCbCr color space, as shown.
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The app opens, displaying the image along with a set of controls for each color
component. For the YCbCr color space, the Color Thresholder displays three histograms
representing color components of the image. In this color space, the Y component
represents brightness, the Cb component represents the blue-yellow spectrum, and the
Cr component represents the red-green spectrum. Other color spaces use different types
of controls.
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Segment Image Using Color Selector

This example shows how to use the Color Selection option to segment an image
automatically. With this option, you select a color in the foreground or background
by drawing a freehand region. You can draw multiple regions. After you segment
your image using color selection, you can refine your result using the individual color
component controls. See “Segment Image Using Color Component Controls” on page
11-70.

To segment the image automatically based on a color selection, click  Select Colors.
When you move the cursor of the image, it changes shape to a cross-hairs which you can
use to draw regions to specify the colors you want to segment.
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Draw a freehand region using the mouse to select the color you want to use for
segmentation. You can draw multiple regions.
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After drawing the regions, click Find Thresholds to threshold the image based on the
color in the region you drew. To delete the regions that you drew, right click on the line
and select Delete.
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Segment Image Using Color Component ControlsThis example shows how to use the Color Thresholder app to segment an image
interactively using color component controls. Segmentation using the Color Thresholder
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is an iterative process—you might need to try several different color spaces before
you achieve a segmentation that meets your needs. You can also perform an initial
segmentation automatically using the color selection option and then refine the results
using the color component controls. See “Segment Image Using Color Selector” on page
11-67.

Segment the image interactively using the color component controls. Move the slider
associated with each histogram over the colors in the histogram. You can see the
segmentation in progress. For this example, moving the slider on the Y component has
the greatest effect on segmenting the background, but it’s hard to cleanly segment the
background without including part of the foreground image, as shown in the following
figure. Since this is an iterative process, try another color space.

To use another color space, click New Color Space. The app displays the Choose a
color space dialog box again.
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Select a new color space in the Choose a Color Space dialog box. For this example,
choose the HSV color space. The Color Thresholder creates a new tab displaying the
image and the color component controls for this color space. The HSV color space uses
a dual-direction knob for the H component and two histogram sliders for the S and V
components. In this color space, H stands for hue, S for saturation, and V for value.
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As you did before with the YCbCr color space, use the color component controls to
segment the image interactively. As you use the controls, you can see the segmentation
in progress. Using the mouse, grab one of the handles on the H control and move it in the
direction of the arrow. Experiment with the controls until you have a clean separation
of the background from the foreground. In this color space, you can achieve a good
segmentation using the H control, as shown in the following figure. You can clean up
small imperfections after you create the mask image using other toolbox functions, such
as morphological operators. For information about saving your segmented image, see
“Create an Image Mask” on page 11-74.
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Create an Image Mask

This example shows how to create a mask image after segmentation. You can also get the
segmented image and the MATLAB code used to create the mask image.

After segmenting the foreground and background, you can swap the foreground and
background by clicking Invert Mask. Inverting the mask can be helpful when, for
example, you can achieve a cleaner segmentation working with the background but you
want a mask of the foreground. Perform the segmentation with the background, and then
invert the mask.
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View the binary mask image that you created by clicking Show Binary.
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When you are satisfied with the segmentation, click Export Images and select Export
Images to save the mask image in the workspace. you can also save the segmented
original image.

In the Export to Workspace dialog box, specify the name of the variables for the binary
mask image and the segmented version of the original image.
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To save the MATLAB code required to recreate the segmentation you just performed,
click Export Images and select Export Function. The Color Thresholder app opens
the MATLAB Editor with the code that creates the segmentation. To save the code, click
Save in the MATLAB Editor. You can run this code, passing it an RGB image, and create
the same mask image programmatically.

function [BW,maskedRGBImage] = createMask(RGB)

%createMask Threshold RGB image using auto-generated code from colorThresholder app.

% [BW,MASKEDRGBIMAGE] = createMask(RGB) thresholds image RGB using 

% auto-generated code from the colorThresholder App. The colorspace and

% minimum/maximum values for each channel of the colorspace were set in the 

% App and result in a binary mask BW and a composite image maskedRGBImage,

% which shows the original RGB image values under the mask BW.

% Auto-generated by colorThresholder app on 03-Jun-2014

%------------------------------------------------------

% Convert RGB image to chosen color space

I = rgb2hsv(RGB);

% Define thresholds for channel 1 based on histogram settings

channel1Min = 0.739;

channel1Max = 0.940;

% Define thresholds for channel 2 based on histogram settings

channel2Min = 0.328;

channel2Max = 0.671;

% Define thresholds for channel 3 based on histogram settings

channel3Min = 0.122;

channel3Max = 0.803;
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% Create mask based on chosen histogram thresholds

BW = (I(:,:,1) >= channel1Min ) & (I(:,:,1) <= channel1Max) & ...

    (I(:,:,2) >= channel2Min ) & (I(:,:,2) <= channel2Max) & ...

    (I(:,:,3) >= channel3Min ) & (I(:,:,3) <= channel3Max);

% Invert mask

BW = ~BW;

% Initialize output masked image based on input image.

maskedRGBImage = RGB;

% Set background pixels where BW is false to zero.

maskedRGBImage(repmat(~BW,[1 1 3])) = 0;
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Image Quality Metrics

While the final arbiter of image quality is the human viewer, efforts have been made
to create objective measures of quality. This can be useful for many applications. Many
objective measures of quality require the existence of a distortion-free copy of an image,
called the reference image, that can be used for comparison with the image whose quality
is to be measured. The dimensions of the reference image matrix and the dimensions of
the degraded image matrix must be identical.

The Image Processing Toolbox provides several function that can be used to measure
quality:

• psnr — The peak signal-to-noise ratio measure of quality works by first calculating
the mean squared error (MSE) and then dividing the maximum range of the data
type by the MSE. This measure is simple to calculate but sometimes doesn’t align
well with perceived quality by humans. For example, the PSNR for a blurred image
compared to an unblurred image is quite high, even though the perceived quality is
low.

• ssim — The Structural Similarity (SSIM) Index measure of quality works by
measuring the structural similarity that compares local patterns of pixel intensities
that have been normalized for luminance and contrast. This quality metric is based on
the principle that the human visual system is good for extracting information based
on structure.

In this section...

“Obtain Local Structural Similarity Index” on page 11-80
“Compare Image Quality at Various Compression Levels” on page 11-82

Obtain Local Structural Similarity Index

This example shows how to measure the quality of regions of an image when compared
with a reference image. The ssim function calculates the structural similarity index
for each pixel in an image, based on its relationship to other pixels in an 11-by-11
neighborhood. The function returns this information in an image that is the same size as
the image whose quality is being measured. This local, pixel-by-pixel, quality index can
be viewed as an image, with proper scaling.

Read an image to use as the reference image.
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ref = imread('pout.tif');

Create an image whose quality is to be measured, by making a copy of the reference
image and adding noise. To illustrate local similarity, isolate the noise to half of the
image. Display the reference image and the noisy image side-by-side.

A = ref;

A(:,ceil(end/2):end) = imnoise(ref(:,ceil(end/2):end),'salt & pepper', 0.1);

figure, imshowpair(A,ref,'montage')

Calculate the local Structural Similarity Index for the modified image (A), when
compared to the reference image (ref). Visualize the local structural similarity index.
Note how left side of the image, which is identical to the reference image displays as
white because all the local structural similarity values are 1.

[global_sim local_sim] = ssim(A,ref);

figure, imshow(local_sim,[])
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Compare Image Quality at Various Compression Levels

This example shows how to test image quality using ssim. The example creates images
at various compression levels and then plots the quality metrics. To run this example,
you must have write permission in your current folder.



 Image Quality Metrics

11-83

Read image.

I = imread('cameraman.tif');

Write the image to a file using various quality values. The JPEG format supports the
‘Quality’ parameter. Use ssim to check the quality of each written image.

ssimValues = zeros(1,10);

qualityFactor = 10:10:100;

for i = 1:10

    

    imwrite(I,'compressedImage.jpg','jpg','quality',qualityFactor(i));

    

    ssimValues(i) = ssim(imread('compressedImage.jpg'),I);

end

Plot the results. Note how the image quality score improves as you increase the quality
value specified with imwrite.

plot(qualityFactor,ssimValues,'b-o');

xlabel('Compression Quality Factor');

ylabel('SSIM Value');
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Image Segmentation Using the Image Segmenter App

This example shows how to use the Image Segmenter app to segment an image. The
Image Segmenter app uses the active contours algorithm. To segment an image using the
app is a three step process.

• Open the app and load an image.
• Create the initial segmentation—This part involves creating a mask image that

specifies the initial segmentation from. This initial segmentation defines the starting
points where active contour algorithm begins its segmentation of the image. The app
provides several ways for you to initialize a segmentation: importing a mask image,
using thresholding, using a grid of predefined starting points, or drawing regions in
the image.

• Evolve and refine the segmentation—After creating the mask image that defines the
segmentation starting points, you run the segmentation. The segmentation algorithm
evolves the initial segmentation over the specified number of iterations. The resulting
segmentation can then be further refined. The result of the segmentation is a mask
image.

In this section...

“Open Image Segmenter App” on page 11-85
“Create the Initial Segmentation” on page 11-88
“Evolve and Refine the Segmentation” on page 11-91

Open Image Segmenter App

This example shows how to open the Image Segmenter app and load an image.

Read an image into the MATLAB workspace. The example uses the dicomread function
to import MRI data of a knee joint. This example segments the three bony areas of the
image from the surrounding soft tissue.

I = dicomread('knee1');

imshow(I,[])
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To segment the knee image, open the Image Segmenter app, From the MATLAB
Toolstrip, open the Apps tab and under Image Processing and Computer Vision, click
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Image Segmenter . Click Load Image to bring the knee image into the app. You
can also open the app at the command line using the imageSegmenter command.

imageSegmenter(I)
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Create the Initial Segmentation
This example shows how to create the initial segmentation. When using the Image
Segmenter app, you must create an initial segmentation of the image in which you
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identify the objects in the image that you want to segment and define the starting points
used by the active contours algorithm when it evolves this segmentation.

To create the initial segmentation, click Initialize. The app opens the Initialization
tab.

The Initialization tab provides several ways to create the initial segmentation. Pick the
one that works best with your image.

• Load a predefined mask image from the workspace or a binary image file. Click Load
Mask.

• Use thresholding to create a mask. Sometimes, the objects you want to segment in the
image have similar pixel intensity values and these values are easily distinguished
from other areas of the image, such as the background. You can specify an intensity
value, use the slider to select an intensity value interactively, or let the app pick the
intensity value for you, by setting  Set Automatic Threshold.

• Create a mask that is a grid of circular regions that cover the entire image. You
control how many elements are in the grid and the size of each element. This method
can be useful when the image has many regions to be segmented that are distinct
from the background.

• Create a mask interactively by drawing regions in the objects you want to segment.
You can draw freehand regions or polygonal regions.
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Because the knee image does not have well-defined pixel intensity differences between
foreground and background, and contains many other objects besides the bony objects,
this example uses the Draw freehand option to create the initial segmentation.
When you have drawn the regions in the objects, click Accept. The app closes the
Initialization tab and returns you to the Segmentation tab with the initialization mask
in place.



 Image Segmentation Using the Image Segmenter App

11-91

Evolve and Refine the Segmentation
This example shows how to evolve the segmentation of the image using the initial
segmentation that you created. The Image Segmenter app uses the active contours
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algorithm, which is an iterative algorithm. You can specify the number of iterations and
the method used, Region-based or Edge-based. You can experiment with these settings
until you achieve the desired segmentation.

Run the segmentation by clicking Evolve. For a first pass, the example uses the default
method (Region-based) and the default number of iterations. Looking at the results, you
can see that this approach worked for two of the three objects but the segmentation bled
into the background for one of the objects. The object boundary isn’t as well defined in
this area.
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To try the segmentation again, click Reset. This option reverts the image back to the
initial segmentation. Use Reset if you want to experiment with different segmentation
options like the number iterations or method used.
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One way to improve this result is to run the segmentation again, this time reducing the
number of iterations. By performing fewer iterations, you can stop the segmentation
before it goes over the object boundary. On the Segmentation tab, reduce the number of
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iterations by half (50) and click Evolve. The results of this segmentation do not bleed
over the object boundary.
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To improve the initialization mask, click Refine. On the Refinement tab you can
eliminate small or large objects, fill holes, or clear objects that touch the border. For
example, in the segmentation, one of the objects has a very small hole.

To fill this hole, click Fill Holes. To save the changes you make, click Accept.
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When you achieve the segmentation you desire, you can create a mask image. Click
Export and select Export Images. In the Export to Workspace dialog box, you can
assign names to the initial segmentation mask image, the evolved segmentation mask
image, or a segmented version of the original image.

To get the MATLAB code the app used to segment the image, click Export and select the
Export Function option. The app opens the MATLAB editor containing a function with
the code required to segment the image.
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Image Region Properties

Image regions, also called objects, connected components, or blobs, can be contiguous or
discontiguous. The following figure shows a binary image with two contiguous regions.

A region in an image can have properties, such as an area, center of mass, orientation,
and bounding box. To calculate these properties for regions (and many more) in an image,
you can use the Image Region Analyzer app or the regionprops function.
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Calculate Region Properties Using Image Region Analyzer

This example shows how to calculate the properties of regions in binary images using the
Image Region Analyzer app. This example finds the 10 largest regions in the image as
measured by their area.

Read a binary image into the MATLAB workspace.

BW = imread('text.png');

Open the Image Region Analyzer app from the MATLAB Toolstrip. On the Apps tab, in

the Image Processing and Computer Vision group, click .

In the Image Region Analyzer app, click Load Image, and then select Load Image
from Workspace, since you have already read the image into the workspace.

In the Import From Workspace dialog box, select the image you read into the workspace,
and click OK.
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The Image Region Analyzer app displays the image you selected next to a table
where every row is a region identified in the image and every column is a property
of that region, such as the area of the region, perimeter, and orientation. (The Image
Region Analyzer app uses regionprops to identify regions in the image and calculate
properties of these regions.)
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The app calculates more properties than are displayed initially. To view more properties
in the table, click Choose Properties and select the properties you want to view.
Properties displayed are marked with a check. The app updates the table automatically,
adding a new column to the table.
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To explore the image, sort the information in the table. For example, if you sort on Area
property, the table lists the regions in order by size. Click the Sort Table button in the
Properties group and select the property you want to sort on.
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To view the region in the image with the largest area, click the item in the table. The app
highlights the corresponding region in the image.
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To save this data, click Export to see options.
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If you want to save the table of region property values in a workspace variable, select
Export Properties. To save the data in both a structure and a table, click OK.

The app stores the data in a MATLAB structure, as in the following.

propsStruct(1)

ans = 
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               Area: 106

    MajorAxisLength: 16.5975

    MinorAxisLength: 12.8996

       Eccentricity: 0.6292

        Orientation: -18.7734

        EulerNumber: 0

      EquivDiameter: 11.6174

          Perimeter: 64.7960

The app also stores the data in a MATLAB table, as in the following.

propsTable(1,1)

propsTable(1,:)

ans = 

    Area    MajorAxisLength    MinorAxisLength    Eccentricity    Orientation    EulerNumber    EquivDiameter    Perimeter

    ____    _______________    _______________    ____________    ___________    ___________    _____________    _________

    106     16.598             12.9               0.62925         -18.773        0               11.617           64.796
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Filter Images on Region Properties Using Image Region Analyzer
App

This example shows how to create a new binary image by filtering an existing binary
image based on the properties of regions in the image.

Read a binary image into the MATLAB workspace.

BW = imread('text.png');

Open the Image Region Analyzer app from the MATLAB Toolstrip. On the Apps tab, in

the Image Processing and Computer Vision group, click .

In the Image Region Analyzer app, click Load Image, and then select Load Image
from Workspace, since you have already read the image into the workspace.

In the Import From Workspace dialog box, select the image you read into the workspace,
and click OK.
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The Image Region Analyzer app displays the image you selected next to a table where
every row is a region identified in the image and every column is a property of that
region, such as the area, perimeter, and orientation. The Image Region Analyzer app
uses regionprops to identify regions in the image and calculate properties of these
regions.
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To filter on the value of a region property, click Filter and select the property on which
you want to filter.
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Next, specify the filter criteria. For example, to create an image that removes all but
the largest regions, choose the greater than or equal to symbol (>=) and then specify the
minimum value. Sometimes it’s useful to sort the values in the table by the property
you are interested in to determine what the minimum value should be. The app changes
the elements of this dialog box, depending on which criteria you pick. The app uses the
bwpropfilt and bwareafilt function to filter binary images.
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To filter on another property, click Add. The app displays another row in which you can
select a property and specify filter criteria.

If you are creating a mask image, you can optionally perform some clean up operations
on the mask, such as clearing all foreground pixels that touch the border and filling holes
in objects.
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When you are done filtering the image, you can save it. Click Export and select Export
Image.
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In the Export to Workspace dialog box, accept the default name for the mask image, or
specify another name, and click OK.
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ROI-Based Processing

This chapter describes how to define a region of interest (ROI) and perform processing on
the ROI you define.

• “Specifying a Region of Interest (ROI)” on page 12-2
• “Filtering an ROI” on page 12-5
• “Filling an ROI” on page 12-8
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Specifying a Region of Interest (ROI)

In this section...

“Overview of ROI Processing” on page 12-2
“Creating a Binary Mask” on page 12-2
“Creating an ROI Without an Associated Image” on page 12-3
“Creating an ROI Based on Color Values” on page 12-4

Overview of ROI Processing

A region of interest (ROI) is a portion of an image that you want to filter or perform some
other operation on. You define an ROI by creating a binary mask, which is a binary
image that is the same size as the image you want to process with pixels that define the
ROI set to 1 and all other pixels set to 0.

You can define more than one ROI in an image. The regions can be geographic in nature,
such as polygons that encompass contiguous pixels, or they can be defined by a range of
intensities. In the latter case, the pixels are not necessarily contiguous.

Using Binary Images as a Mask

This section describes how to create binary masks to define ROIs. However, any binary
image can be used as a mask, provided that the binary image is the same size as the
image being filtered. For example, suppose you want to filter the grayscale image
I, filtering only those pixels whose values are greater than 0.5. You can create the
appropriate mask with this command: BW = (I > 0.5).

Creating a Binary Mask

You can use the createMask method of the imroi base class to create a binary mask
for any type of ROI object — impoint, imline, imrect, imellipse, impoly, or
imfreehand. The createMask method returns a binary image the same size as the
input image, containing 1s inside the ROI and 0s everywhere else.

The example below illustrates how to use the createMask method:

img = imread('pout.tif');

h_im = imshow(img);
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e = imellipse(gca,[55 10 120 120]);

BW = createMask(e,h_im);

You can reposition the mask by dragging it with the mouse. Right click, select copy
position, and call createMask again.

BW = createMask(e,h_im);

The mask behaves like a cookie cutter and can be repositioned repeatedly to select new
ROIs.

Creating an ROI Without an Associated Image

Using the createMask method of ROI objects you can create a binary mask that defines
an ROI associated with a particular image. To create a binary mask without having
an associated image, use the poly2mask function. Unlike the createMask method,
poly2mask does not require an input image. You specify the vertices of the ROI in two
vectors and specify the size of the binary mask returned. For example, the following
creates a binary mask that can be used to filter an ROI in the pout.tif image.

c = [123 123 170 170]; 

r = [160 210 210 160];
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m = 291;  % height of pout image

n = 240;  % width of pout image

BW = poly2mask(c,r,m,n);

figure, imshow(BW)

Creating an ROI Based on Color Values

You can use the roicolor function to define an ROI based on color or intensity range.
For more information, see the reference page for roicolor.
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Filtering an ROI

In this section...

“Overview of ROI Filtering” on page 12-5
“Filtering a Region in an Image” on page 12-5
“Specifying the Filtering Operation” on page 12-6

Overview of ROI Filtering

Filtering a region of interest (ROI) is the process of applying a filter to a region in an
image, where a binary mask defines the region. For example, you can apply an intensity
adjustment filter to certain regions of an image.

To filter an ROI in an image, use the roifilt2 function. When you call roifilt2, you
specify:

• Input grayscale image to be filtered
• Binary mask image that defines the ROI
• Filter (either a 2-D filter or function)

roifilt2 filters the input image and returns an image that consists of filtered values
for pixels where the binary mask contains 1s and unfiltered values for pixels where the
binary mask contains 0s. This type of operation is called masked filtering.

roifilt2 is best suited for operations that return data in the same range as in the
original image, because the output image takes some of its data directly from the input
image. Certain filtering operations can result in values outside the normal image data
range (i.e., [0,1] for images of class double, [0,255] for images of class uint8, and
[0,65535] for images of class uint16). For more information, see the reference page for
roifilt2.

Filtering a Region in an Image

This example uses masked filtering to increase the contrast of a specific region of an
image:

1 Read in the image.

I = imread('pout.tif');
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2 Create the mask.

This example uses the mask BW created by the createMask method in the section
“Creating a Binary Mask” on page 12-2. The region of interest specified is the child's
face.

3 Use fspecial to create the filter:

h = fspecial('unsharp');

4 Call roifilt2, specifying the filter, the image to be filtered, and the mask:

I2 = roifilt2(h,I,BW);

imshow(I)

figure, imshow(I2)

Image Before and After Using an Unsharp Filter on the Region of Interest

Specifying the Filtering Operation

roifilt2 also enables you to specify your own function to operate on the ROI. This
example uses the imadjust function to lighten parts of an image:

1 Read in the image.

I = imread('cameraman.tif');

2 Create the mask. In this example, the mask is a binary image containing text. The
mask image must be cropped to be the same size as the image to be filtered:

BW = imread('text.png');

mask = BW(1:256,1:256); 
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3 Create the function you want to use as a filter:

f = @(x) imadjust(x,[],[],0.3);

4 Call roifilt2, specifying the image to be filtered, the mask, and the filter. The
resulting image, I2, has the text imprinted on it:

I2 = roifilt2(I,mask,f);

imshow(I2)

Image Brightened Using a Binary Mask Containing Text
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Filling an ROI

Filling is a process that fills a region of interest (ROI) by interpolating the pixel values
from the borders of the region. This process can be used to make objects in an image
seem to disappear as they are replaced with values that blend in with the background
area.

To fill an ROI, you can use the roifill function. This function is useful for image
editing, including removal of extraneous details or artifacts.

roifill performs the fill operation using an interpolation method based on Laplace's
equation. This method results in the smoothest possible fill, given the values on the
boundary of the region.

Select the region of interest with the mouse. When you complete the selection, roifill
returns an image with the selected ROI filled in.

This example shows how to use roifill to fill an ROI in an image.

1 Read an image into the MATLAB workspace and display it. Because the image is an
indexed image, the example uses ind2gray to convert it to a grayscale image:

load trees

I = ind2gray(X,map);

imshow(I)

2 Call roifill to specify the ROI you want to fill. When you move the pointer over

the image, the pointer shape changes to cross hairs . Define the ROI by clicking
the mouse to specify the vertices of a polygon. You can use the mouse to adjust the
size and position of the ROI:

I2 = roifill;
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3 Perform the fill operation. Double-click inside the ROI or right-click and select Fill
Area. roifill returns the modified image in I2. View the output image to see how
roifill filled in the area defined by the ROI:

imshow(I2)
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Image Deblurring

This chapter describes how to deblur an image using the toolbox deblurring functions.

• “Understanding Deblurring” on page 13-2
• “Deblurring with the Wiener Filter” on page 13-6
• “Deblurring with a Regularized Filter” on page 13-7
• “Deblurring with the Lucy-Richardson Algorithm” on page 13-9
• “Deblurring with the Blind Deconvolution Algorithm” on page 13-14
• “Creating Your Own Deblurring Functions” on page 13-20
• “Avoiding Ringing in Deblurred Images” on page 13-21
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Understanding Deblurring

In this section...

“Causes of Blurring” on page 13-2
“Deblurring Model” on page 13-2
“Deblurring Functions” on page 13-4

Causes of Blurring

The blurring, or degradation, of an image can be caused by many factors:

• Movement during the image capture process, by the camera or, when long exposure
times are used, by the subject

• Out-of-focus optics, use of a wide-angle lens, atmospheric turbulence, or a short
exposure time, which reduces the number of photons captured

• Scattered light distortion in confocal microscopy

Deblurring Model

A blurred or degraded image can be approximately described by this equation g = Hf + n,
where

g The blurred image
H The distortion operator, also called the point spread function (PSF). In the spatial

domain, the PSF describes the degree to which an optical system blurs (spreads)
a point of light. The PSF is the inverse Fourier transform of the optical transfer
function (OTF). In the frequency domain, the OTF describes the response of
a linear, position-invariant system to an impulse. The OTF is the Fourier
transform of the point spread function (PSF). The distortion operator, when
convolved with the image, creates the distortion. Distortion caused by a point
spread function is just one type of distortion.

f The original true image
n Additive noise, introduced during image acquisition, that corrupts the image

Note The image f really doesn't exist. This image represents what you would have if you
had perfect image acquisition conditions.
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Importance of the PSF

Based on this model, the fundamental task of deblurring is to deconvolve the blurred
image with the PSF that exactly describes the distortion. Deconvolution is the process of
reversing the effect of convolution.

Note The quality of the deblurred image is mainly determined by knowledge of the PSF.

To illustrate, this example takes a clear image and deliberately blurs it by convolving it
with a PSF. The example uses the fspecial function to create a PSF that simulates a
motion blur, specifying the length of the blur in pixels, (LEN=31), and the angle of the
blur in degrees (THETA=11). Once the PSF is created, the example uses the imfilter
function to convolve the PSF with the original image, I, to create the blurred image,
Blurred. (To see how deblurring is the reverse of this process, using the same images,
see “Deblurring with the Wiener Filter” on page 13-6.)

I = imread('peppers.png');

I = I(60+[1:256],222+[1:256],:); % crop the image

figure; imshow(I); title('Original Image');

LEN = 31;

THETA = 11;

PSF = fspecial('motion',LEN,THETA); % create PSF

Blurred = imfilter(I,PSF,'circular','conv');

figure; imshow(Blurred); title('Blurred Image');
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Deblurring Functions

The toolbox includes four deblurring functions, listed here in order of complexity. All the
functions accept a PSF and the blurred image as their primary arguments.

deconvwnr Implements a least squares solution. You should provide some
information about the noise to reduce possible noise amplification
during deblurring. See “Deblurring with the Wiener Filter” on page
13-6 for more information.

deconvreg Implements a constrained least squares solution, where you can place
constraints on the output image (the smoothness requirement is the
default). You should provide some information about the noise to
reduce possible noise amplification during deblurring. See “Deblurring
with a Regularized Filter” on page 13-7 for more information.

deconvlucy Implements an accelerated, damped Lucy-Richardson algorithm. This
function performs multiple iterations, using optimization techniques
and Poisson statistics. You do not need to provide information about
the additive noise in the corrupted image. See “Deblurring with the
Lucy-Richardson Algorithm” on page 13-9 for more information.

deconvblind Implements the blind deconvolution algorithm, which performs
deblurring without knowledge of the PSF. You pass as an argument
your initial guess at the PSF. The deconvblind function returns a
restored PSF in addition to the restored image. The implementation
uses the same damping and iterative model as the deconvlucy
function. See “Deblurring with the Blind Deconvolution Algorithm” on
page 13-14 for more information.
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When using the deblurring functions, note the following:

• Deblurring is an iterative process. You might need to repeat the deblurring process
multiple times, varying the parameters you specify to the deblurring functions
with each iteration, until you achieve an image that, based on the limits of your
information, is the best approximation of the original scene. Along the way, you must
make numerous judgments about whether newly uncovered features in the image are
features of the original scene or simply artifacts of the deblurring process.

• To avoid "ringing" in a deblurred image, you can use the edgetaper function to
preprocess your image before passing it to the deblurring functions. See “Avoiding
Ringing in Deblurred Images” on page 13-21 for more information.

• For information about creating your own deblurring functions, see “Creating Your
Own Deblurring Functions” on page 13-20.
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Deblurring with the Wiener Filter

Use the deconvwnr function to deblur an image using the Wiener filter. Wiener
deconvolution can be used effectively when the frequency characteristics of the image
and additive noise are known, to at least some degree. In the absence of noise, the
Wiener filter reduces to the ideal inverse filter. See the deconvwnr reference page for an
example of deblurring an image with the Wiener filter.

Refining the Result

You can affect the deconvolution results by providing values for the optional arguments
supported by the deconvwnr function. Using these arguments you can specify the noise-
to-signal power value and/or provide autocorrelation functions to help refine the result
of deblurring. To see the impact of these optional arguments, view the Image Processing
Toolbox deblurring examples.
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Deblurring with a Regularized Filter

Use the deconvreg function to deblur an image using a regularized filter. A regularized
filter can be used effectively when limited information is known about the additive noise.

To illustrate, this example simulates a blurred image by convolving a Gaussian filter
PSF with an image (using imfilter). Additive noise in the image is simulated by adding
Gaussian noise of variance V to the blurred image (using imnoise):

1 Read an image into the MATLAB workspace. The example uses cropping to reduce
the size of the image to be deblurred. This is not a required step in deblurring
operations.

I = imread('tissue.png');

I = I(125+[1:256],1:256,:);

figure, imshow(I)

title('Original Image')

Image Courtesy Alan W. Partin
2 Create the PSF.

PSF = fspecial('gaussian',11,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'conv');

V = .02;

BlurredNoisy = imnoise(Blurred,'gaussian',0,V);

figure, imshow(BlurredNoisy)

title('Blurred and Noisy Image')
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4 Use deconvreg to deblur the image, specifying the PSF used to create the blur and
the noise power, NP.

NP = V*prod(size(I)); 

[reg1 LAGRA] = deconvreg(BlurredNoisy,PSF,NP);

figure,imshow(reg1)

title('Restored Image')

Refining the Result

You can affect the deconvolution results by providing values for the optional arguments
supported by the deconvreg function. Using these arguments you can specify the noise
power value, the range over which deconvreg should iterate as it converges on the
optimal solution, and the regularization operator to constrain the deconvolution. To see
the impact of these optional arguments, view the Image Processing Toolbox deblurring
examples.
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Deblurring with the Lucy-Richardson Algorithm

In this section...

“Overview” on page 13-9
“Reducing the Effect of Noise Amplification” on page 13-9
“Accounting for Nonuniform Image Quality” on page 13-10
“Handling Camera Read-Out Noise” on page 13-10
“Handling Undersampled Images” on page 13-10
“Example: Using the deconvlucy Function to Deblur an Image” on page 13-11
“Refining the Result” on page 13-13

Overview

Use the deconvlucy function to deblur an image using the accelerated, damped, Lucy-
Richardson algorithm. The algorithm maximizes the likelihood that the resulting image,
when convolved with the PSF, is an instance of the blurred image, assuming Poisson
noise statistics. This function can be effective when you know the PSF but know little
about the additive noise in the image.

The deconvlucy function implements several adaptations to the original Lucy-
Richardson maximum likelihood algorithm that address complex image restoration
tasks.

Reducing the Effect of Noise Amplification

Noise amplification is a common problem of maximum likelihood methods that attempt
to fit data as closely as possible. After many iterations, the restored image can have a
speckled appearance, especially for a smooth object observed at low signal-to-noise ratios.
These speckles do not represent any real structure in the image, but are artifacts of
fitting the noise in the image too closely.

To control noise amplification, the deconvlucy function uses a damping parameter,
DAMPAR. This parameter specifies the threshold level for the deviation of the resulting
image from the original image, below which damping occurs. For pixels that deviate in
the vicinity of their original values, iterations are suppressed.
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Damping is also used to reduce ringing, the appearance of high-frequency structures in a
restored image. Ringing is not necessarily the result of noise amplification. See “Avoiding
Ringing in Deblurred Images” on page 13-21 for more information.

Accounting for Nonuniform Image Quality

Another complication of real-life image restoration is that the data might include bad
pixels, or that the quality of the receiving pixels might vary with time and position. By
specifying the WEIGHT array parameter with the deconvlucy function, you can specify
that certain pixels in the image be ignored. To ignore a pixel, assign a weight of zero to
the element in the WEIGHT array that corresponds to the pixel in the image.

The algorithm converges on predicted values for the bad pixels based on the information
from neighborhood pixels. The variation in the detector response from pixel to pixel (the
so-called flat-field correction) can also be accommodated by the WEIGHT array. Instead of
assigning a weight of 1.0 to the good pixels, you can specify fractional values and weight
the pixels according to the amount of the flat-field correction.

Handling Camera Read-Out Noise

Noise in charge coupled device (CCD) detectors has two primary components:

• Photon counting noise with a Poisson distribution
• Read-out noise with a Gaussian distribution

The Lucy-Richardson iterations intrinsically account for the first type of noise. You must
account for the second type of noise; otherwise, it can cause pixels with low levels of
incident photons to have negative values.

The deconvlucy function uses the READOUT input parameter to handle camera read-out
noise. The value of this parameter is typically the sum of the read-out noise variance and
the background noise (e.g., number of counts from the background radiation). The value
of the READOUT parameter specifies an offset that ensures that all values are positive.

Handling Undersampled Images

The restoration of undersampled data can be improved significantly if it is done on
a finer grid. The deconvlucy function uses the SUBSMPL parameter to specify the
subsampling rate, if the PSF is known to have a higher resolution.
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If the undersampled data is the result of camera pixel binning during image acquisition,
the PSF observed at each pixel rate can serve as a finer grid PSF. Otherwise, the
PSF can be obtained via observations taken at subpixel offsets or via optical modeling
techniques. This method is especially effective for images of stars (high signal-to-noise
ratio), because the stars are effectively forced to be in the center of a pixel. If a star is
centered between pixels, it is restored as a combination of the neighboring pixels. A finer
grid redirects the consequent spreading of the star flux back to the center of the star's
image.

Example: Using the deconvlucy Function to Deblur an Image

To illustrate a simple use of deconvlucy, this example simulates a blurred, noisy image
by convolving a Gaussian filter PSF with an image (using imfilter) and then adding
Gaussian noise of variance V to the blurred image (using imnoise):

1 Read an image into the MATLAB workspace. (The example uses cropping to reduce
the size of the image to be deblurred. This is not a required step in deblurring
operations.)

I = imread('board.tif');

I = I(50+[1:256],2+[1:256],:);

figure, imshow(I)

title('Original Image')

2 Create the PSF.

PSF = fspecial('gaussian',5,5);

3 Create a simulated blur in the image and add noise.

Blurred = imfilter(I,PSF,'symmetric','conv');
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V = .002;

BlurredNoisy = imnoise(Blurred,'gaussian',0,V);

figure, imshow(BlurredNoisy)

title('Blurred and Noisy Image')

4 Use deconvlucy to restore the blurred and noisy image, specifying the PSF used to
create the blur, and limiting the number of iterations to 5 (the default is 10).

Note The deconvlucy function can return values in the output image that are
beyond the range of the input image.

luc1 = deconvlucy(BlurredNoisy,PSF,5);

figure, imshow(luc1)

title('Restored Image')
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Refining the Result

The deconvlucy function, by default, performs multiple iterations of the deblurring
process. You can stop the processing after a certain number of iterations to check the
result, and then restart the iterations from the point where processing stopped. To
do this, pass in the input image as a cell array, for example, {BlurredNoisy}. The
deconvlucy function returns the output image as a cell array that you can then pass as
an input argument to deconvlucy to restart the deconvolution.

The output cell array contains these four elements:

Element Description

output{1} Original input image
output{2} Image produced by the last iteration
output{3} Image produced by the next to last iteration
output{4} Internal information used by deconvlucy to know where to restart

the process

The deconvlucy function supports several other optional arguments you can use to
achieve the best possible result, such as specifying a damping parameter to handle
additive noise in the blurred image. To see the impact of these optional arguments, view
the Image Processing Toolbox deblurring examples.



13 Image Deblurring

13-14

Deblurring with the Blind Deconvolution Algorithm

Use the deconvblind function to deblur an image using the blind deconvolution
algorithm. The algorithm maximizes the likelihood that the resulting image, when
convolved with the resulting PSF, is an instance of the blurred image, assuming Poisson
noise statistics. The blind deconvolution algorithm can be used effectively when no
information about the distortion (blurring and noise) is known. The deconvblind
function restores the image and the PSF simultaneously, using an iterative process
similar to the accelerated, damped Lucy-Richardson algorithm.

The deconvblind function, just like the deconvlucy function, implements several
adaptations to the original Lucy-Richardson maximum likelihood algorithm that address
complex image restoration tasks. Using these adaptations, you can

• Reduce the effect of noise on the restoration
• Account for nonuniform image quality (e.g., bad pixels)
• Handle camera read-out noise

For more information about these adaptations, see “Deblurring with the Lucy-Richardson
Algorithm” on page 13-9. In addition, the deconvblind function supports PSF
constraints that can be passed in through a user-specified function.

Example: Using the deconvblind Function to Deblur an Image

To illustrate blind deconvolution, this example creates a simulated blurred image and
then uses deconvblind to deblur it. The example makes two passes at deblurring the
image to show the effect of certain optional parameters on the deblurring operation:

1 Read an image into the MATLAB workspace.

I = imread('cameraman.tif');

figure, imshow(I)

title('Original Image')
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2 Create the PSF.

PSF = fspecial('motion',13,45);

figure, imshow(PSF,[],'InitialMagnification','fit')

title('Original PSF')

3 Create a simulated blur in the image.

Blurred = imfilter(I,PSF,'circ','conv');

figure, imshow(Blurred)

title('Blurred Image')
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4 Deblur the image, making an initial guess at the size of the PSF.

To determine the size of the PSF, examine the blurred image and measure the width
of a blur (in pixels) around an obviously sharp object. In the sample blurred image,
you can measure the blur near the contour of the man's sleeve. Because the size of
the PSF is more important than the values it contains, you can typically specify an
array of 1's as the initial PSF.

The following figure shows a restoration where the initial guess at the PSF is the
same size as the PSF that caused the blur. In a real application, you might need to
rerun deconvblind, experimenting with PSFs of different sizes, until you achieve
a satisfactory result. The restored PSF returned by each deconvolution can also
provide valuable hints at the optimal PSF size. See the Image Processing Toolbox
deblurring example.

INITPSF = ones(size(PSF));

[J P]= deconvblind(Blurred,INITPSF,30);

figure, imshow(J)

title('Restored Image')

figure, imshow(P,[],'InitialMagnification','fit')

title('Restored PSF')
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Although deconvblind was able to deblur the image to a great extent, the ringing
around the sharp intensity contrast areas in the restored image is unsatisfactory.
(The example eliminated edge-related ringing by using the 'circular' option with
imfilter when creating the simulated blurred image in step 3.)

The next steps in the example repeat the deblurring process, attempting to achieve a
better result by

• Eliminating high-contrast areas from the processing
• Specifying a better PSF

5 Create a WEIGHT array to exclude areas of high contrast from the deblurring
operation. This can reduce contrast-related ringing in the result.

To exclude a pixel from processing, you create an array of the same size as the
original image, and assign the value 0 to the pixels in the array that correspond
to pixels in the original image that you want to exclude from processing. (See
“Accounting for Nonuniform Image Quality” on page 13-10 for information about
WEIGHT arrays.)

To create a WEIGHT array, the example uses a combination of edge detection and
morphological processing to detect high-contrast areas in the image. Because
the blur in the image is linear, the example dilates the image twice. (For more
information about using these functions, see“Morphological Operations” .) To exclude
the image boundary pixels (a high-contrast area) from processing, the example uses
padarray to assign the value 0 to all border pixels.

WEIGHT = edge(I,'sobel',.28);
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se1 = strel('disk',1);

se2 = strel('line',13,45);

WEIGHT = ~imdilate(WEIGHT,[se1 se2]);

WEIGHT = padarray(WEIGHT(2:end-1,2:end-1),[2 2]);

figure, imshow(WEIGHT)

title('Weight Array')

6 Refine the guess at the PSF. The reconstructed PSF P returned by the first pass
at deconvolution shows a clear linearity, as shown in the figure in step 4. For the
second pass, the example uses a new PSF, P1, which is the same as the restored PSF
but with the small amplitude pixels set to 0.

P1 = P;

P1(find(P1 < 0.01))=0;

7 Rerun the deconvolution, specifying the WEIGHT array and the modified PSF. Note
how the restored image has much less ringing around the sharp intensity contrast
areas than the result of the first pass (step 4).

[J2 P2] = deconvblind(Blurred,P1,50,[],WEIGHT);

figure, imshow(J2)

title('Newly Deblurred Image');

figure, imshow(P2,[],'InitialMagnification','fit')

title('Newly Reconstructed PSF')
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Refining the Result

The deconvblind function, by default, performs multiple iterations of the deblurring
process. You can stop the processing after a certain number of iterations to check the
result, and then restart the iterations from the point where processing stopped. To use
this feature, you must pass in both the blurred image and the PSF as cell arrays, for
example, {Blurred} and {INITPSF}.

The deconvblind function returns the output image and the restored PSF as cell
arrays. The output image cell array contains these four elements:

Element Description

output{1} Original input image
output{2} Image produced by the last iteration
output{3} Image produced by the next to last iteration
output{4} Internal information used by deconvlucy to know where to restart

the process

The PSF output cell array contains similar elements.

The deconvblind function supports several other optional arguments you can use
to achieve the best possible result, such as specifying a damping parameter to handle
additive noise in the blurred image. To see the impact of these optional arguments, as
well as the functional option that allows you to place additional constraints on the PSF
reconstruction, see the Image Processing Toolbox deblurring examples.
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Creating Your Own Deblurring Functions

All the toolbox deblurring functions perform deconvolution in the frequency domain,
where the process becomes a simple matrix multiplication. To work in the frequency
domain, the deblurring functions must convert the PSF you provide into an optical
transfer function (OTF), using the psf2otf function. The toolbox also provides a
function to convert an OTF into a PSF, otf2psf. The toolbox makes these functions
available in case you want to create your own deblurring functions. (In addition, to aid
this conversion between PSFs and OTFs, the toolbox also makes the padding function
padarray available.)
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Avoiding Ringing in Deblurred Images

The discrete Fourier transform (DFT), used by the deblurring functions, assumes that
the frequency pattern of an image is periodic. This assumption creates a high-frequency
drop-off at the edges of images. In the figure, the shaded area represents the actual
extent of the image; the unshaded area represents the assumed periodicity.

This high-frequency drop-off can create an effect called boundary related ringing in
deblurred images. In this figure, note the horizontal and vertical patterns in the image.

To avoid ringing, use the edgetaper function to preprocess your images before passing
them to the deblurring functions. The edgetaper function removes the high-frequency
drop-off at the edge of an image by blurring the entire image and then replacing the
center pixels of the blurred image with the original image. In this way, the edges of the
image taper off to a lower frequency.
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Color

This chapter describes the toolbox functions that help you work with color image data.
Note that “color“ includes shades of gray; therefore much of the discussion in this chapter
applies to grayscale images as well as color images.

• “Displaying Colors” on page 14-2
• “Reducing the Number of Colors in an Image” on page 14-4
• “Convert from YIQ to RGB Color Space” on page 14-12
• “Convert from YCbCr to RGB Color Space” on page 14-13
• “Convert from HSV to RGB Color Space” on page 14-14
• “Profile-Based Color Space Conversions” on page 14-17
• “Device-Independent Color Spaces” on page 14-21
• “Understanding Color Spaces and Color Space Conversion” on page 14-24
• “Determine if L*a*b* value is in RGB gamut” on page 14-25
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Displaying Colors

The number of bits per screen pixel determines the display's screen bit depth. The screen
bit depth determines the screen color resolution, which is how many distinct colors the
display can produce.

Most computer displays use 8, 16, or 24 bits per screen pixel. Depending on your system,
you might be able to choose the screen bit depth you want to use. In general, 24-bit
display mode produces the best results. If you need to use a lower screen bit depth, 16-bit
is generally preferable to 8-bit. However, keep in mind that a 16-bit display has certain
limitations, such as

• An image might have finer gradations of color than a 16-bit display can represent. If a
color is unavailable, MATLAB uses the closest approximation.

• There are only 32 shades of gray available. If you are working primarily with
grayscale images, you might get better display results using 8-bit display mode, which
provides up to 256 shades of gray.

To determine the bit depth of your system's screen, enter this command at the MATLAB
prompt.

get(0,'ScreenDepth')

ans =

     32

The integer MATLAB returns represents the number of bits per screen pixel:

Value Screen Bit Depth

8 8-bit displays support 256 colors. An 8-bit display can produce any of
the colors available on a 24-bit display, but only 256 distinct colors can
appear at one time. (There are 256 shades of gray available, but if all 256
shades of gray are used, they take up all the available color slots.)

16 16-bit displays usually use 5 bits for each color component, resulting in
32 (i.e., 25) levels each of red, green, and blue. This supports 32,768 (i.e.,
215) distinct colors (of which 32 are shades of gray). Some systems use the
extra bit to increase the number of levels of green that can be displayed.
In this case, the number of different colors supported by a 16-bit display
is actually 64,536 (i.e. 216).
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Value Screen Bit Depth

24 24-bit displays use 8 bits for each of the three color components,
resulting in 256 (i.e., 28) levels each of red, green, and blue. This supports
16,777,216 (i.e., 224) different colors. (Of these colors, 256 are shades of
gray. Shades of gray occur where R=G=B.) The 16 million possible colors
supported by 24-bit display can render a lifelike image.

32 32-bit displays use 24 bits to store color information and use the
remaining 8 bits to store transparency data (alpha channel). For
information about how MATLAB supports the alpha channel, see the
section “Mapping Data to Transparency — Alpha Data” in the MATLAB
3-D Visualization documentation.

Regardless of the number of colors your system can display, MATLAB can store and
process images with very high bit depths: 224 colors for uint8 RGB images, 248 colors
for uint16 RGB images, and 2159 for double RGB images. These images are displayed
best on systems with 24-bit color, but usually look fine on 16-bit systems as well. For
information about reducing the number of colors used by an image, see “Reducing the
Number of Colors in an Image” on page 14-4.
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Reducing the Number of Colors in an Image

In this section...

“Reducing Colors Using Color Approximation” on page 14-4
“Reducing Colors Using imapprox” on page 14-9
“Dithering” on page 14-10

Reducing Colors Using Color Approximation

On systems with 24-bit color displays, truecolor images can display up to 16,777,216 (i.e.,
224) colors. On systems with lower screen bit depths, truecolor images are still displayed
reasonably well, because MATLAB automatically uses color approximation and dithering
if needed. Color approximation is the process by which the software chooses replacement
colors in the event that direct matches cannot be found.

Indexed images, however, might cause problems if they have a large number of colors. In
general, you should limit indexed images to 256 colors for the following reasons:

• On systems with 8-bit display, indexed images with more than 256 colors will need to
be dithered or mapped and, therefore, might not display well.

• On some platforms, colormaps cannot exceed 256 entries.
• If an indexed image has more than 256 colors, MATLAB cannot store the image data

in a uint8 array, but generally uses an array of class double instead, making the
storage size of the image much larger (each pixel uses 64 bits).

• Most image file formats limit indexed images to 256 colors. If you write an indexed
image with more than 256 colors (using imwrite) to a format that does not support
more than 256 colors, you will receive an error.

To reduce the number of colors in an image, use the rgb2ind function. This function
converts a truecolor image to an indexed image, reducing the number of colors in the
process. rgb2ind provides the following methods for approximating the colors in the
original image:

• Quantization (described in “Quantization” on page 14-5)

• Uniform quantization
• Minimum variance quantization

• Colormap mapping (described in “Colormap Mapping” on page 14-9)
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The quality of the resulting image depends on the approximation method you use, the
range of colors in the input image, and whether or not you use dithering. Note that
different methods work better for different images. See “Dithering” on page 14-10 for
a description of dithering and how to enable or disable it.

Quantization

Reducing the number of colors in an image involves quantization. The function rgb2ind
uses quantization as part of its color reduction algorithm. rgb2ind supports two
quantization methods: uniform quantization and minimum variance quantization.

An important term in discussions of image quantization is RGB color cube. The RGB
color cube is a three-dimensional array of all of the colors that are defined for a particular
data type. Since RGB images in MATLAB can be of type uint8, uint16, or double,
three possible color cube definitions exist. For example, if an RGB image is of class
uint8, 256 values are defined for each color plane (red, blue, and green), and, in total,
there will be 224 (or 16,777,216) colors defined by the color cube. This color cube is the
same for all uint8 RGB images, regardless of which colors they actually use.

The uint8, uint16, and double color cubes all have the same range of colors. In other
words, the brightest red in a uint8 RGB image appears the same as the brightest red in
a double RGB image. The difference is that the double RGB color cube has many more
shades of red (and many more shades of all colors). The following figure shows an RGB
color cube for a uint8 image.

RGB Color Cube for uint8 Images
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Quantization involves dividing the RGB color cube into a number of smaller boxes, and
then mapping all colors that fall within each box to the color value at the center of that
box.

Uniform quantization and minimum variance quantization differ in the approach used
to divide up the RGB color cube. With uniform quantization, the color cube is cut up into
equal-sized boxes (smaller cubes). With minimum variance quantization, the color cube is
cut up into boxes (not necessarily cubes) of different sizes; the sizes of the boxes depend
on how the colors are distributed in the image.

Uniform Quantization

To perform uniform quantization, call rgb2ind and specify a tolerance. The tolerance
determines the size of the cube-shaped boxes into which the RGB color cube is divided.
The allowable range for a tolerance setting is [0,1]. For example, if you specify a tolerance
of 0.1, the edges of the boxes are one-tenth the length of the RGB color cube and the
maximum total number of boxes is

n = (floor(1/tol)+1)^3

The commands below perform uniform quantization with a tolerance of 0.1.

RGB = imread('peppers.png');

[x,map] = rgb2ind(RGB, 0.1);

The following figure illustrates uniform quantization of a uint8 image. For clarity, the
figure shows a two-dimensional slice (or color plane) from the color cube where red=0 and
green and blue range from 0 to 255. The actual pixel values are denoted by the centers of
the x's.
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Uniform Quantization on a Slice of the RGB Color Cube

After the color cube has been divided, all empty boxes are thrown out. Therefore, only one
of the boxes is used to produce a color for the colormap. As shown earlier, the maximum
length of a colormap created by uniform quantization can be predicted, but the colormap
can be smaller than the prediction because rgb2ind removes any colors that do not
appear in the input image.

Minimum Variance Quantization

To perform minimum variance quantization, call rgb2ind and specify the maximum
number of colors in the output image's colormap. The number you specify determines
the number of boxes into which the RGB color cube is divided. These commands use
minimum variance quantization to create an indexed image with 185 colors.

RGB = imread('peppers.png');

[X,map] = rgb2ind(RGB,185);

Minimum variance quantization works by associating pixels into groups based on the
variance between their pixel values. For example, a set of blue pixels might be grouped
together because they have a small variance from the center pixel of the group.
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In minimum variance quantization, the boxes that divide the color cube vary in size, and
do not necessarily fill the color cube. If some areas of the color cube do not have pixels,
there are no boxes in these areas.

While you set the number of boxes, n, to be used by rgb2ind, the placement is
determined by the algorithm as it analyzes the color data in your image. Once the image
is divided into n optimally located boxes, the pixels within each box are mapped to the
pixel value at the center of the box, as in uniform quantization.

The resulting colormap usually has the number of entries you specify. This is because
the color cube is divided so that each region contains at least one color that appears in
the input image. If the input image uses fewer colors than the number you specify, the
output colormap will have fewer than n colors, and the output image will contain all of
the colors of the input image.

The following figure shows the same two-dimensional slice of the color cube as shown
in the preceding figure (demonstrating uniform quantization). Eleven boxes have been
created using minimum variance quantization.

Minimum Variance Quantization on a Slice of the RGB Color Cube

For a given number of colors, minimum variance quantization produces better
results than uniform quantization, because it takes into account the actual data.
Minimum variance quantization allocates more of the colormap entries to colors
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that appear frequently in the input image. It allocates fewer entries to colors that
appear infrequently. As a result, the accuracy of the colors is higher than with uniform
quantization. For example, if the input image has many shades of green and few shades
of red, there will be more greens than reds in the output colormap. Note that the
computation for minimum variance quantization takes longer than that for uniform
quantization.

Colormap Mapping

If you specify an actual colormap to use, rgb2ind uses colormap mapping (instead of
quantization) to find the colors in the specified colormap that best match the colors in the
RGB image. This method is useful if you need to create images that use a fixed colormap.
For example, if you want to display multiple indexed images on an 8-bit display, you
can avoid color problems by mapping them all to the same colormap. Colormap mapping
produces a good approximation if the specified colormap has similar colors to those in the
RGB image. If the colormap does not have similar colors to those in the RGB image, this
method produces poor results.

This example illustrates mapping two images to the same colormap. The colormap used
for the two images is created on the fly using the MATLAB function colorcube, which
creates an RGB colormap containing the number of colors that you specify. (colorcube
always creates the same colormap for a given number of colors.) Because the colormap
includes colors all throughout the RGB color cube, the output images can reasonably
approximate the input images.

RGB1 = imread('autumn.tif');

RGB2 = imread('peppers.png');

X1 = rgb2ind(RGB1,colorcube(128));

X2 = rgb2ind(RGB2,colorcube(128));

Note The function subimage is also helpful for displaying multiple indexed images. For
more information, see “Displaying Multiple Images in the Same Figure” on page 4-9 or
the reference page for subimage.

Reducing Colors Using imapprox

Use imapprox when you need to reduce the number of colors in an indexed image.
imapprox is based on rgb2ind and uses the same approximation methods. Essentially,
imapprox first calls ind2rgb to convert the image to RGB format, and then calls
rgb2ind to return a new indexed image with fewer colors.
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For example, these commands create a version of the trees image with 64 colors, rather
than the original 128.

load trees

[Y,newmap] = imapprox(X,map,64);

imshow(Y, newmap);

The quality of the resulting image depends on the approximation method you use, the
range of colors in the input image, and whether or not you use dithering. Note that
different methods work better for different images. See “Dithering” on page 14-10 for
a description of dithering and how to enable or disable it.

Dithering

When you use rgb2ind or imapprox to reduce the number of colors in an image, the
resulting image might look inferior to the original, because some of the colors are lost.
rgb2ind and imapprox both perform dithering to increase the apparent number of
colors in the output image. Dithering changes the colors of pixels in a neighborhood so
that the average color in each neighborhood approximates the original RGB color.

For an example of how dithering works, consider an image that contains a number of
dark orange pixels for which there is no exact match in the colormap. To create the
appearance of this shade of orange, dithering selects a combination of colors from the
colormap, that, taken together as a six-pixel group, approximate the desired shade
of orange. From a distance, the pixels appear to be the correct shade, but if you look
up close at the image, you can see a blend of other shades. To illustrate dithering, the
following example loads a 24-bit truecolor image, and then uses rgb2ind to create an
indexed image with just eight colors. The first example does not use dithering, the second
does use dithering.

1 Read image and display it.

rgb=imread('onion.png'); 

imshow(rgb);
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2 Create an indexed image with eight colors and without dithering.

[X_no_dither,map]= rgb2ind(rgb,8,'nodither');

figure, imshow(X_no_dither,map);

3 Create an indexed image using eight colors with dithering. Notice that the dithered
image has a larger number of apparent colors but is somewhat fuzzy-looking. The
image produced without dithering has fewer apparent colors, but an improved
spatial resolution when compared to the dithered image. One risk in doing color
reduction without dithering is that the new image can contain false contours.

[X_dither,map]=rgb2ind(rgb,8,'dither');

figure, imshow(X_dither,map);
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Convert from YIQ to RGB Color Space

The National Television Systems Committee (NTSC) defines a color space known as YIQ.
This color space is used in televisions in the United States. One of the main advantages
of this format is that grayscale information is separated from color data, so the same
signal can be used for both color and black and white sets.

In the NTSC color space, image data consists of three components: luminance (Y), hue (I),
and saturation (Q). The first component, luminance, represents grayscale information,
while the last two components make up chrominance (color information).

The function rgb2ntsc converts colormaps or RGB images to the NTSC color space.
ntsc2rgb performs the reverse operation.

For example, these commands convert an RGB image to NTSC format.

RGB = imread('peppers.png');

YIQ = rgb2ntsc(RGB);

Because luminance is one of the components of the NTSC format, the RGB to NTSC
conversion is also useful for isolating the gray level information in an image. In fact, the
toolbox functions rgb2gray and ind2gray use the rgb2ntsc function to extract the
grayscale information from a color image.

For example, these commands are equivalent to calling rgb2gray.

YIQ = rgb2ntsc(RGB);

I = YIQ(:,:,1);

Note In the YIQ color space, I is one of the two color components, not the grayscale
component.
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Convert from YCbCr to RGB Color Space

The YCbCr color space is widely used for digital video. In this format, luminance
information is stored as a single component (Y), and chrominance information is stored
as two color-difference components (Cb and Cr). Cb represents the difference between
the blue component and a reference value. Cr represents the difference between the red
component and a reference value. (YUV, another color space widely used for digital video,
is very similar to YCbCr but not identical.)

YCbCr data can be double precision, but the color space is particularly well suited to
uint8 data. For uint8 images, the data range for Y is [16, 235], and the range for Cb
and Cr is [16, 240]. YCbCr leaves room at the top and bottom of the full uint8 range so
that additional (nonimage) information can be included in a video stream.

The function rgb2ycbcr converts colormaps or RGB images to the YCbCr color space.
ycbcr2rgb performs the reverse operation.

For example, these commands convert an RGB image to YCbCr format.

RGB = imread('peppers.png');

YCBCR = rgb2ycbcr(RGB);
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Convert from HSV to RGB Color Space

The HSV color space (Hue, Saturation, Value) is often used by people who are selecting
colors (e.g., of paints or inks) from a color wheel or palette, because it corresponds better
to how people experience color than the RGB color space does. The functions rgb2hsv
and hsv2rgb convert images between the RGB and HSV color spaces.

Note: MATLAB and the Image Processing Toolbox software do not support the HSI
color space (Hue, Saturation, Intensity). However, if you want to work with color data
in terms of hue, saturation, and intensity, the HSV color space is very similar. Another
option is to use the LCH color space (Luminosity, Chroma, and Hue), which is a polar
transformation of the CIE L*a*b* color space — see “Device-Independent Color Spaces”
on page 14-21.

As hue varies from 0 to 1.0, the corresponding colors vary from red through yellow,
green, cyan, blue, magenta, and back to red, so that there are actually red values both
at 0 and 1.0. As saturation varies from 0 to 1.0, the corresponding colors (hues) vary
from unsaturated (shades of gray) to fully saturated (no white component). As value, or
brightness, varies from 0 to 1.0, the corresponding colors become increasingly brighter.

The following figure illustrates the HSV color space.
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Illustration of the HSV Color Space

The rgb2hsv function converts colormaps or RGB images to the HSV color space.
hsv2rgb performs the reverse operation. These commands convert an RGB image to the
HSV color space.

RGB = imread('peppers.png');

HSV = rgb2hsv(RGB);

For closer inspection of the HSV color space, the next block of code displays the separate
color planes (hue, saturation, and value) of an HSV image.

RGB=reshape(ones(64,1)*reshape(jet(64),1,192),[64,64,3]);

HSV=rgb2hsv(RGB);

H=HSV(:,:,1);

S=HSV(:,:,2);

V=HSV(:,:,3);

subplot(2,2,1), imshow(H)

subplot(2,2,2), imshow(S)

subplot(2,2,3), imshow(V)

subplot(2,2,4), imshow(RGB)
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The Separated Color Planes of an HSV Image

As the hue plane image in the preceding figure illustrates, hue values make a linear
transition from high to low. If you compare the hue plane image against the original
image, you can see that shades of deep blue have the highest values, and shades of deep
red have the lowest values. (As stated previously, there are values of red on both ends
of the hue scale. To avoid confusion, the sample image uses only the red values from the
beginning of the hue range.)

Saturation can be thought of as the purity of a color. As the saturation plane image
shows, the colors with the highest saturation have the highest values and are
represented as white. In the center of the saturation image, notice the various shades of
gray. These correspond to a mixture of colors; the cyans, greens, and yellow shades are
mixtures of true colors. Value is roughly equivalent to brightness, and you will notice
that the brightest areas of the value plane correspond to the brightest colors in the
original image.
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Profile-Based Color Space Conversions

If two colors have the same CIE colorimetry, they will match if viewed under the same
conditions. However, because color images are typically produced for a wide variety of
viewing environments, it is necessary to go beyond simple application of the CIE system.

For this reason, the International Color Consortium (ICC) has defined a Color
Management System (CMS) that provides a means for communicating color information
among input, output, and display devices. The CMS uses device profiles that contain
color information specific to a particular device. Vendors that support CMS provide
profiles that characterize the color reproduction of their devices, and methods, called
Color Management Modules (CMM), that interpret the contents of each profile and
perform the necessary image processing.

Device profiles contain the information that color management systems need to translate
color data between devices. Any conversion between color spaces is a mathematical
transformation from some domain space to a range space. With profile-based conversions,
the domain space is often called the source space and the range space is called the
destination space. In the ICC color management model, profiles are used to represent the
source and destination spaces.

For more information about color management systems, go to the International Color
Consortium Web site, www.color.org.

Read ICC Profiles

To read an ICC profile into the MATLAB workspace, use the iccread function. In
this example, the function reads in the profile for the color space that describes color
monitors.

P = iccread('sRGB.icm');

You can use the iccfind function to find ICC color profiles on your system, or to find a
particular ICC color profile whose description contains a certain text string. To get the
name of the directory that is the default system repository for ICC profiles, use iccroot.

iccread returns the contents of the profile in the structure P. All profiles contain
a header, a tag table, and a series of tagged elements. The header contains general
information about the profile, such as the device class, the device color space, and the file
size. The tagged elements, or tags, are the data constructs that contain the information

http://www.color.org
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used by the CMM. For more information about the contents of this structure, see the
iccread function reference page.

Using iccread, you can read both Version 2 (ICC.1:2001-04) or Version 4
(ICC.1:2001-12) ICC profile formats. For detailed information about these specifications
and their differences, visit the ICC web site, www.color.org.

Write ICC Profile Information to a File

To export ICC profile information from the MATLAB workspace to a file, use the
iccwrite function. This example reads a profile into the MATLAB workspace and then
writes the profile information out to a new file.

P = iccread('sRGB.icm');

P_new = iccwrite(P,'my_profile.icm');

iccwrite returns the profile it writes to the file in P_new because it can be different
than the input profile P. For example, iccwrite updates the Filename field in P to
match the name of the file specified as the second argument.

When it creates the output file, iccwrite checks the validity of the input profile
structure. If any required fields are missing, iccwrite returns an error message. For
more information about the writing ICC profile data to a file, see the iccwrite function
reference page. To determine if a structure is a valid ICC profile, use the isicc function.

Using iccwrite, you can export profile information in both Version 2 (ICC.1:2001-04)
or Version 4 (ICC.1:2001-12) ICC profile formats. The value of the Version field in the
file profile header determines the format version. For detailed information about these
specifications and their differences, visit the ICC web site, www.color.org.

Convert RGB to CMYK Using ICC Profiles

This example shows how to convert color data from the RGB color space used by a
monitor to the CMYK color space used by a printer. This conversion requires two profiles:
a monitor profile and a printer profile. The source color space in this example is monitor
RGB and the destination color space is printer CMYK:

Import RGB color space data. This example imports an RGB color image into the
MATLAB workspace.

http://www.color.org
http://www.color.org
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I_rgb = imread('peppers.png');

Read ICC profiles. Read the source and destination profiles into the MATLAB workspace.
This example uses the sRGB profile as the source profile. The sRGB profile is an
industry-standard color space that describes a color monitor.

inprof = iccread('sRGB.icm');

For the destination profile, the example uses a profile that describes a particular color
printer. The printer vendor supplies this profile. (The following profile and several other
useful profiles can be obtained as downloads from www.adobe.com.)

outprof = iccread('USSheetfedCoated.icc');

Create a color transformation structure. You must create a color transformation
structure to define the conversion between the color spaces in the profiles. You use the
makecform function to create the structure, specifying a transformation type string
as an argument. This example creates a color transformation structure that defines a
conversion from RGB color data to CMYK color data. The color space conversion might
involve an intermediate conversion into a device-independent color space, called the
Profile Connection Space (PCS), but this is transparent to the user.

C = makecform('icc',inprof,outprof);

Perform the conversion. You use the applycform function to perform the conversion,
specifying as arguments the color data you want to convert and the color transformation
structure that defines the conversion. The function returns the converted data.

I_cmyk = applycform(I_rgb,C);

Write the converted data to a file. To export the CMYK data, use the imwrite function,
specifying the format as TIFF. If the format is TIFF and the data is an m-by-n-by-4
array, imwrite writes CMYK data to the file.

imwrite(I_cmyk,'pep_cmyk.tif','tif')

To verify that the CMYK data was written to the file, use imfinfo to get information
about the file and look at the PhotometricInterpretation field.

info = imfinfo('pep_cmyk.tif');

info.PhotometricInterpretation

ans =
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   'CMYK'

What is Rendering Intent in Profile-Based Conversions?

For most devices, the range of reproducible colors is much smaller than the range of
colors represented by the PCS. It is for this reason that four rendering intents (or gamut
mapping techniques) are defined in the profile format. Each one has distinct aesthetic
and color-accuracy tradeoffs.

When you create a profile-based color transformation structure, you can specify the
rendering intent for the source as well as the destination profiles. For more information,
see the makecform reference information.
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Device-Independent Color Spaces

The standard terms used to describe colors, such as hue, brightness, and intensity, are
subjective and make comparisons difficult.

In 1931, the International Commission on Illumination, known by the acronym CIE, for
Commission Internationale de l'Éclairage, studied human color perception and developed
a standard, called the CIE XYZ. This standard defined a three-dimensional space where
three values, called tristimulus values, define a color. This standard is still widely used
today.

In the decades since that initial specification, the CIE has developed several additional
color space specifications that attempt to provide alternative color representations that
are better suited to some purposes than XYZ. For example, in 1976, in an effort to get a
perceptually uniform color space that could be correlated with the visual appearance of
colors, the CIE created the L*a*b* color space.

Convert Between Device-Independent Color Spaces

Image Processing Toolbox supports conversions between members of the CIE family
of device-independent color spaces. In addition, the toolbox also supports conversions
between these CIE color spaces and the sRGB color space. This color space was defined
by an industry group to describe the characteristics of a typical PC monitor.

This table lists all the device-independent color spaces that the toolbox supports.

Color Space Description Supported
Conversions

XYZ The original, 1931 CIE color space specification. xyY, uvl, u′v′L,
and L*a*b*

xyY CIE specification that provides normalized chromaticity
values. The capital Y value represents luminance and is
the same as in XYZ.

XYZ

uvL CIE specification that attempts to make the chromaticity
plane more visually uniform. L is luminance and is the
same as Y in XYZ.

XYZ

u′v′L CIE specification in which u and v are rescaled to improve
uniformity.

XYZ
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Color Space Description Supported
Conversions

L*a*b* CIE specification that attempts to make the luminance
scale more perceptually uniform. L* is a nonlinear scaling
of L, normalized to a reference white point.

XYZ

L*ch CIE specification where c is chroma and h is hue. These
values are a polar coordinate conversion of a* and b* in
L*a*b*.

L*a*b*

sRGB Standard adopted by major manufacturers that
characterizes the average PC monitor.

XYZ and L*a*b*

Color Space Data Encodings

When you convert between two device-independent color spaces, the data type used to
encode the color data can sometimes change, depending on what encodings the color
spaces support. In the preceding example, the original image is uint8 data. The XYZ
conversion is uint16 data. The XYZ color space does not define a uint8 encoding. The
following table lists the data types that can be used to represent values in all the device-
independent color spaces.

Color Space Encodings

XYZ uint16 or double
xyY double

uvL double

u'v'L double

L*a*b* uint8, uint16, or double
L*ch double

RGB double uint8 uint16

As the table indicates, certain color spaces have data type limitations. For example, the
XYZ color space does not define a uint8 encoding. If you convert 8-bit CIE LAB data into
the XYZ color space, the data is returned in uint16 format. To change the encoding of
XYZ data, use these functions:

• xyz2double
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• xyz2uint16

To change the encoding of L*a*b* data, use these functions:

• lab2double

• lab2uint8

• lab2uint16

To change the encoding of RGB data, use these functions:

• im2double

• im2uint8

• im2uint16



14 Color

14-24

Understanding Color Spaces and Color Space Conversion

The Image Processing Toolbox software represents colors as RGB values, either directly
(in an RGB image) or indirectly (in an indexed image, where the colormap is stored in
RGB format). However, there are other models besides RGB for representing colors
numerically. The various models are referred to as color spaces because most of them can
be mapped into a 2-D, 3-D, or 4-D coordinate system; thus, a color specification is made
up of coordinates in a 2-D, 3-D, or 4-D space.

The various color spaces exist because they present color information in ways that make
certain calculations more convenient or because they provide a way to identify colors that
is more intuitive. For example, the RGB color space defines a color as the percentages of
red, green, and blue hues mixed together. Other color models describe colors by their hue
(green), saturation (dark green), and luminance, or intensity.

The toolbox supports these color spaces by providing a means for converting color data
from one color space to another through a mathematical transformation.
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Determine if L*a*b* value is in RGB gamut

This example shows how to use color space conversion to determine if an L*a*b* value
is in the RGB gamut. The set of colors that can be represented using a particular color
space is called its gamut . Some L*a*b* color values may be out-of-gamut when converted
to RGB.

Convert an L*a*b* value to RGB. The negative values returned demonstrate that the
L*a*b* color [80 -130 85] is not in the gamut of the sRGB color space, which is the
default RGB color space used by lab2rgb. An RGB color is out of gamut when any of its
component values are less than 0 or greater than 1.

lab = [80 -130 85];

lab2rgb(lab)

ans =

   -0.6210    0.9537   -0.1926

Convert the L*a*b* value to RGB, this time specifying a different RGB colorspace, the
Adobe RGB (1998) color space. The Adobe RGB (1998) has a larger gamut than sRGB.
Use the 'ColorSpace' name-value pair. Because the output values are between 0.0 and
1.0 (inclusive), you can conclude that the L*a*b* color [80 -130 85] is inside the Adobe
RGB (1998) gamut.

lab2rgb(lab,'ColorSpace','adobe-rgb-1998')

ans =

    0.1234    0.9522    0.1073
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Neighborhood and Block Operations

This chapter discusses these generic block processing functions. Topics covered include

• “Neighborhood or Block Processing: An Overview” on page 15-2
• “Performing Sliding Neighborhood Operations” on page 15-3
• “Performing Distinct Block Operations” on page 15-7
• “Using Columnwise Processing to Speed Up Sliding Neighborhood or Distinct Block

Operations” on page 15-23
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Neighborhood or Block Processing: An Overview

Certain image processing operations involve processing an image in sections, called
blocks or neighborhoods, rather than processing the entire image at once. Several
functions in the toolbox, such as linear filtering and morphological functions, use this
approach.

The toolbox includes several functions that you can use to implement image processing
algorithms as a block or neighborhood operation. These functions break the input
image into blocks or neighborhoods, call the specified function to process each block or
neighborhood, and then reassemble the results into an output image. The following table
summarizes these functions.

Function Description

nlfilter Implements sliding neighborhood operations that you
can use to process an input image in a pixelwise fashion.
For each pixel in the input image, the function performs
the operation you specify on a block of neighboring pixels
to determine the value of the corresponding pixel in the
output image. For more information, see “Performing
Sliding Neighborhood Operations” on page 15-3

blockproc Implements distinct block operations that you can use to
process an input image a block at a time. The function
divides the image into rectangular blocks, and performs
the operation you specify on each individual block to
determine the values of the pixels in the corresponding
block of the output image. For more information, see
“Performing Distinct Block Operations” on page 15-7

colfilt Implements columnwise processing operations which
provide a way of speeding up neighborhood or block
operations by rearranging blocks into matrix columns.
For more information, see “Using Columnwise Processing
to Speed Up Sliding Neighborhood or Distinct Block
Operations” on page 15-23.
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Performing Sliding Neighborhood Operations

In this section...

“Understanding Sliding Neighborhood Processing” on page 15-3
“Implementing Linear and Nonlinear Filtering as Sliding Neighborhood Operations” on
page 15-5

Understanding Sliding Neighborhood Processing

A sliding neighborhood operation is an operation that is performed a pixel at a time, with
the value of any given pixel in the output image being determined by the application
of an algorithm to the values of the corresponding input pixel's neighborhood. A pixel's
neighborhood is some set of pixels, defined by their locations relative to that pixel, which
is called the center pixel. The neighborhood is a rectangular block, and as you move from
one element to the next in an image matrix, the neighborhood block slides in the same
direction. (To operate on an image a block at a time, rather than a pixel at a time, use the
distinct block processing function. See “Performing Distinct Block Operations” on page
15-7 for more information.)

The following figure shows the neighborhood blocks for some of the elements in a 6-by-5
matrix with 2-by-3 sliding blocks. The center pixel for each neighborhood is marked with
a dot. For information about how the center pixel is determined, see “Determining the
Center Pixel” on page 15-4.

Neighborhood Blocks in a 6-by-5 Matrix
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Determining the Center Pixel

The center pixel is the actual pixel in the input image being processed by the operation. If
the neighborhood has an odd number of rows and columns, the center pixel is actually in
the center of the neighborhood. If one of the dimensions has even length, the center pixel
is just to the left of center or just above center. For example, in a 2-by-2 neighborhood,
the center pixel is the upper left one.

For any m-by-n neighborhood, the center pixel is

floor(([m n]+1)/2)

In the 2-by-3 block shown in the preceding figure, the center pixel is (1,2), or the pixel in
the second column of the top row of the neighborhood.

General Algorithm of Sliding Neighborhood Operations

To perform a sliding neighborhood operation,

1 Select a single pixel.
2 Determine the pixel's neighborhood.
3 Apply a function to the values of the pixels in the neighborhood. This function must

return a scalar.
4 Find the pixel in the output image whose position corresponds to that of the center

pixel in the input image. Set this output pixel to the value returned by the function.
5 Repeat steps 1 through 4 for each pixel in the input image.

For example, the function might be an averaging operation that sums the values of
the neighborhood pixels and then divides the result by the number of pixels in the
neighborhood. The result of this calculation is the value of the output pixel.

Padding Borders in Sliding Neighborhood Operations

As the neighborhood block slides over the image, some of the pixels in a neighborhood
might be missing, especially if the center pixel is on the border of the image. For
example, if the center pixel is the pixel in the upper left corner of the image, the
neighborhoods include pixels that are not part of the image.

To process these neighborhoods, sliding neighborhood operations pad the borders of the
image, usually with 0's. In other words, these functions process the border pixels by
assuming that the image is surrounded by additional rows and columns of 0's. These
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rows and columns do not become part of the output image and are used only as parts of
the neighborhoods of the actual pixels in the image.

Implementing Linear and Nonlinear Filtering as Sliding Neighborhood
Operations

You can use sliding neighborhood operations to implement many kinds of filtering
operations. One example of a sliding neighbor operation is convolution, which is used
to implement linear filtering. MATLAB provides the conv and filter2 functions for
performing convolution, and the toolbox provides the imfilter function. See “What Is
Image Filtering in the Spatial Domain?” for more information about these functions.

In addition to convolution, there are many other filtering operations you can implement
through sliding neighborhoods. Many of these operations are nonlinear in nature. For
example, you can implement a sliding neighborhood operation where the value of an
output pixel is equal to the standard deviation of the values of the pixels in the input
pixel's neighborhood.

To implement a variety of sliding neighborhood operations, use the nlfilter function.
nlfilter takes as input arguments an image, a neighborhood size, and a function that
returns a scalar, and returns an image of the same size as the input image. nlfilter
calculates the value of each pixel in the output image by passing the corresponding input
pixel's neighborhood to the function.

Note: Many operations that nlfilter can implement run much faster if the
computations are performed on matrix columns rather than rectangular neighborhoods.
For information about this approach, see “Using Columnwise Processing to Speed Up
Sliding Neighborhood or Distinct Block Operations” on page 15-23.

For example, this code computes each output pixel by taking the standard deviation of
the values of the input pixel's 3-by-3 neighborhood (that is, the pixel itself and its eight
contiguous neighbors).

I = imread('tire.tif');

I2 = nlfilter(I,[3 3],'std2');

You can also write code to implement a specific function, and then use this function with
nlfilter. For example, this command processes the matrix I in 2-by-3 neighborhoods
with a function called myfun.m. The syntax @myfun is an example of a function handle.
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I2 = nlfilter(I,[2 3],@myfun);

If you prefer not to write code to implement a specific function, you can use an
anonymous function instead. This example converts the image to class double because
the square root function is not defined for the uint8 datatype.

I = im2double(imread('tire.tif'));

f = @(x) sqrt(min(x(:)));

I2 = nlfilter(I,[2 2],f);

(For more information on function handles and anonymous functions, see
function_handle in the MATLAB Function Reference documentation.)

The following example uses nlfilter to set each pixel to the maximum value in its 3-
by-3 neighborhood.

Note This example is only intended to illustrate the use of nlfilter. For a faster way to
perform this local maximum operation, use imdilate.

I = imread('tire.tif');

f = @(x) max(x(:));

I2 = nlfilter(I,[3 3],f);

imshow(I);

figure, imshow(I2);

Each Output Pixel Set to Maximum Input Neighborhood Value
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Performing Distinct Block Operations

In this section...

“Understanding Distinct Block Processing” on page 15-7
“Implementing Block Processing Using the blockproc Function” on page 15-8
“Applying Padding” on page 15-9
“Block Size and Performance” on page 15-11
“Using Parallel Block Processing on large Image Files” on page 15-13
“Working with Data in Unsupported Formats” on page 15-15

Understanding Distinct Block Processing

In distinct block processing, you divide a matrix into m-by-n sections. These sections,
or distinct blocks, overlay the image matrix starting in the upper left corner, with no
overlap. If the blocks do not fit exactly over the image, you can add padding to the image
or work with partial blocks on the right or bottom edges of the image. The following
figure shows a 15-by-30 matrix divided into 4-by-8 blocks. The right and bottom edges
have partial blocks. You can process partial blocks as is, or you can pad the image so that
the resulting size is 16-by-32. For more information, see “Applying Padding” on page
15-9. (To operate on an image a pixel at a time, rather than a block at a time, use
the sliding neighborhood processing function. For more information, see “Performing
Sliding Neighborhood Operations” on page 15-3.)
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Image Divided into Distinct Blocks

Implementing Block Processing Using the blockproc Function

To perform distinct block operations, use the blockproc function. The blockproc
function extracts each distinct block from an image and passes it to a function you specify
for processing. The blockproc function assembles the returned blocks to create an
output image.

For example, the commands below process image I in 25-by-25 blocks with the function
myfun. In this case, the myfun function resizes the blocks to make a thumbnail.
(For more information about using function handles and anonymous functions, see
function_handle in the MATLAB Function Reference documentation.)

myfun = @(block_struct) imresize(block_struct.data,0.15);

I = imread('tire.tif');

I2 = blockproc(I,[25 25],myfun);

Note: Due to block edge effects, resizing an image using blockproc does not produce the
same results as resizing the entire image at once.

The example below uses the blockproc function to set every pixel in each 32-by-32
block of an image to the average of the elements in that block. The anonymous function
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computes the mean of the block, and then multiplies the result by a matrix of ones, so
that the output block is the same size as the input block. As a result, the output image
is the same size as the input image. The blockproc function does not require that the
images be the same size. If this is the result you want, make sure that the function you
specify returns blocks of the appropriate size:

myfun = @(block_struct) ...

   uint8(mean2(block_struct.data)*...

   ones(size(block_struct.data)));

I2 = blockproc('moon.tif',[32 32],myfun);

figure;

imshow('moon.tif');

figure;

imshow(I2,[]);

Original Image Image with Pixels Set to Average Value

Note: Many operations that blockproc can implement run much faster if the
computations are performed on matrix columns rather than rectangular blocks. For
information about this approach, see “Using Columnwise Processing to Speed Up Sliding
Neighborhood or Distinct Block Operations” on page 15-23.

Applying Padding

When processing an image in blocks, you may wish to add padding for two reasons:
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• To address the issue of partial blocks
• To create overlapping borders

As described in “Understanding Distinct Block Processing” on page 15-7, if blocks do
not fit exactly over an image, partial blocks occur along the bottom and right edges of the
image. By default, these partial blocks are processed as is, with no additional padding.
Set the 'PadPartialBlocks' parameter to true to pad the right or bottom edges of the
image and make the blocks full-sized.

You can also add borders to each block. Use the 'BorderSize' parameter to specify
extra rows and columns of pixels outside the block whose values are taken into account
when processing the block. When there is a border, blockproc passes the expanded
block, including the border, to the specified function.

Image Divided into Distinct Blocks with Specified Borders

To process the blocks in the figure above with the function handle myfun, the call is:

B = blockproc(A,[4 8],myfun,'BorderSize',[1 2], ...

   'PadPartialBlocks',true)

Both padding of partial blocks and block borders add to the overall size of the image,
as you can see in the figure. The original 15-by-30 matrix becomes a 16-by-32 matrix
due to padding of partial blocks. Also, each block in the image is processed with a 1-
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by-2 pixel border—one additional pixel on the top and bottom edges and two pixels along
the left and right edges. Blocks along the image edges, expanded to include the border,
extend beyond the bounds of the original image. The border pixels along the image edges
increase the final size of the input matrix to 18-by-36. The outermost rectangle in the
figure delineates the new boundaries of the image after all padding has been added.

By default, blockproc pads the image with zeros. If you need a different type of
padding, use the blockproc function's 'PadMethod' parameter.

Block Size and Performance

When using the blockproc function to either read or write image files, the number of
times the file is accessed can significantly affect performance. In general, selecting larger
block sizes reduces the number of times blockproc has to access the disk, at the cost
of using more memory to process each block. Knowing the file format layout on disk can
help you select block sizes that minimize the number of times the disk is accessed. See
the blockproc reference page for more information about file formats.

TIFF Image Characteristics

TIFF images organize their data on disk in one of two ways: in tiles or in strips. A tiled
TIFF image stores rectangular blocks of data contiguously in the file. Each tile is read
and written as a single unit. TIFF images with strip layout have data stored in strips;
each strip spans the entire width of the image and is one or more rows in height. Like a
tile, each strip is stored, read, and written as a single unit.

When selecting an appropriate block size for TIFF image processing, understanding
the organization of your TIFF image is important. To find out whether your image is
organized in tiles or strips, use the imfinfo function.

The struct returned by imfinfo for TIFF images contains the fields TileWidth and
TileLength. If these fields have valid (nonempty) values, then the image is a tiled
TIFF, and these fields define the size of each tile. If these fields contain values of empty
([]), then the TIFF is organized in strips. For TIFFs with strip layout, refer to the struct
field RowsPerStrip, which defines the size of each strip of data.

When reading TIFF images, the minimum amount of data that can be read is a single
tile or a single strip, depending on the type of TIFF. To optimize the performance of
blockproc, select block sizes that correspond closely with how your TIFF image is
organized on disk. In this way, you can avoid rereading the same pixels multiple times.
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Choosing Block Size

The following three cases demonstrate the influence of block size on the performance
of blockproc. In each of these cases, the total number of pixels in each block is
approximately the same; only the size of the blocks is different.

First, read in an image file and convert it to a TIFF.

imageA = imread('concordorthophoto.png','PNG');

imwrite(imageA,'concordorthophoto.tif','TIFF');

Use imfinfo to determine whether concordorthophoto.tif is organized in strips or
tiles.

imfinfo concordorthophoto.tif

Select fields from the struct appear below:

                        Filename: 'concordorthophoto.tif'

                        FileSize: 6595038

                          Format: 'tif'

                           Width: 2956

                          Height: 2215

                        BitDepth: 8

                       ColorType: 'grayscale'

                   BitsPerSample: 8

                    StripOffsets: [1108x1 double]

                 SamplesPerPixel: 1

                    RowsPerStrip: 2

             PlanarConfiguration: 'Chunky'

                       TileWidth: []

                      TileLength: []

The value 2 in RowsPerStrip indicates that this TIFF image is organized in strips
with two rows per strip. Each strip spans the width of the image (2956 pixels) and is two
pixels tall. The following three cases illustrate how choosing an appropriate block size
can improve performance.

Case 1: Typical Case — Square Block

First try a square block of size [500 500]. Each time the blockproc function accesses
the disk it reads in an entire strip and discards any part of the strip not included in the
current block. With two rows per strip and 500 rows per block, the blockproc function
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accesses the disk 250 times for each block. The image is 2956 pixels wide and 500 rows
wide, or approximately six blocks wide (2956/500 = 5.912). The blockproc function
reads the same strip over and over again for each block that includes pixels contained in
that strip. Since the image is six blocks wide, blockproc reads every strip of the file six
times.

tic, im = blockproc('concordorthophoto.tif',[500 500],@(s) s.data);

toc

Elapsed time is 17.806605 seconds.

Case 2: Worst Case — Column-Shaped Block

The file layout on the disk is in rows. (Stripped TIFF images are always organized in
rows, never in columns.) Try choosing blocks shaped like columns of size [2215 111]. Now
the block is shaped exactly opposite the actual file layout on disk.

The image is over 26 blocks wide (2956/111 = 26.631). Every strip must be read for every
block. The blockproc function reads the entire image from disk 26 times. The amount
of time it takes to process the image with the column-shaped blocks is proportional to the
number of disk reads. With about four times as many disk reads in Case 2, as compared
to Case 1, the elapsed time is about four times as long.

tic, im = blockproc('concordorthophoto.tif',[2215 111],@(s) s.data);

toc

Elapsed time is 60.766139 seconds.

Case 3: Best Case — Row-Shaped Block

Finally, choose a block that aligns with the TIFF strips, a block of size [84 2956]. Each
block spans the width of the image. Each strip is read exactly one time, and all data for a
particular block is stored contiguously on disk.

tic, im = blockproc('concordorthophoto.tif',[84 2956],@(s) s.data);

toc

Elapsed time is 4.610911 seconds.

Using Parallel Block Processing on large Image Files

If you have a Parallel Computing Toolbox™ license, you can take advantage of multiple
processor cores on your machine by specifying the blockproc setting 'UseParallel'
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as true. Doing so divides the block processing among all available MATLAB sessions to
potentially improve the performance of blockproc.

What is Parallel Block Processing?

Parallel block processing allows you to process many blocks simultaneously by
distributing task computations to a collection of MATLAB sessions, called workers.
The MATLAB session with which you interact is called the client. The client reserves a
collection of workers, called a MATLAB pool. Then the client MATLAB session divides
the input image and sends sections to the worker MATLAB sessions. Each worker
processes a subset of blocks and sends the results back to the client. The client MATLAB
collects the results into an output variable.

When you set 'UseParallel' to true, blockproc uses all available workers in the
MATLAB pool to process the input image in parallel.

To read more about parallel computing, see “Key Problems Addressed by Parallel
Computing” and “Introduction to Parallel Solutions” in the Parallel Computing Toolbox
User’s Guide.

When to Use Parallel Block Processing

When processing small images, serial mode is expected to be faster than parallel mode.
For larger images, however, you may see significant performance gains from parallel
processing. The performance of parallel block processing depends on three factors:

• Function used for processing
• Image size
• Block size

In general, using larger blocks while block processing an image results in faster
performance than completing the same task using smaller blocks. However, sometimes
the task or algorithm you are applying to your image requires a certain block size, and
you must use smaller blocks. When block processing using smaller blocks, parallel
block processing is typically faster than regular (serial) block processing, often by a
large margin. If you are using larger blocks, however, you might need to experiment to
determine whether parallel block processing saves computing time.

How to Use Parallel Block Processing

You must meet two conditions to use parallel block processing:



 Performing Distinct Block Operations

15-15

• The source image is not specified as an ImageAdapter class.
• A Parallel Computing Toolbox license exists in the MATLAB installation.

If you meet these conditions, you can enable parallel block processing by opening a
MATLAB pool:

parpool(4)

Here, 4 represents the number of workers in your pool. (See the parpool reference page
for more details.)

After opening a MATLAB pool, you can invoke parallel processing in blockproc by
specifying 'UseParallel' as true. In the following example, compute a discrete cosine
transform for each 8 x 8 block of an image in parallel:

blockFun = @(block_struct) dct2(block_struct.data);

result = blockproc(input_image,[8 8], blockFun, ...

   'UseParallel',true);

Working with Data in Unsupported Formats

In addition to reading TIFF or JPEG2000 files and writing TIFF files, the blockproc
function can read and write other formats. To work with image data in another file
format, you must construct a class that inherits from the ImageAdapter class. The
ImageAdapter class is an “abstract class” that is part of the Image Processing Toolbox
software. It defines the signature for methods that blockproc uses for file I/O with
images on disk. You can associate instances of an Image Adapter class with a file and use
them as arguments to blockproc for file-based block processing.

This section demonstrates the process of writing an Image Adapter class by discussing
an example class (the LanAdapter class). The LanAdapter class is part of the toolbox.
Use this simple, read-only class to process arbitrarily large uint8 LAN files with
blockproc.

Learning More About the LAN File Format

To understand how the LanAdapter class works, you must first know about the LAN file
format. Landsat thematic mapper imagery is stored in the Erdas LAN file format. Erdas
LAN files contain a 128-byte header followed by one or more spectral bands of data,
band-interleaved-by-line (BIL), in order of increasing band number. The data is stored
in little-endian byte order. The header contains several pieces of important information
about the file, including size, data type, and number of bands of imagery contained in
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the file. The LAN file format specification defines the first 24 bytes of the file header as
shown in the table.

File Header Content

Bytes Data Type Content

1–6 6-byte character string 'HEADER' or 'HEAD74'
7–8 16-bit integer Pack type of the file (indicating bit depth)
9–10 16-bit integer Number of bands of data
11–16 6 bytes Unused
17–20 32-bit integer Number of columns of data
21–24 32-bit integer Number of rows of data

The remaining 104 bytes contain various other properties of the file, which this example
does not use.

Parsing the Header

Typically, when working with LAN files, the first step is to learn more about the file by
parsing the header. The following code shows how to parse the header of the rio.lan
file:

1 Open the file:

file_name = 'rio.lan';

fid = fopen(file_name,'r');

2 Read the header string:

header_str = fread(fid,6,'uint8=>char')';

fprintf('Header String: %s\n',header_str);

3 Read the pack type:

pack_type = fread(fid,1,'uint16',0,'ieee-le');

fprintf('Pack Type: %d\n',pack_type);

4 Read the number of spectral bands:

num_bands = fread(fid,1,'uint16',0,'ieee-le');

fprintf('Number of Bands: %d\n',num_bands);

5 Read the image width and height:

unused_bytes = fread(fid,6,'uint8',0,'ieee-le');
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width = fread(fid,1,'uint32',0,'ieee-le');

height = fread(fid,1,'uint32',0,'ieee-le');

fprintf('Image Size (w x h): %d x %d\n',width,height);

6 Close the file:

fclose(fid);

The output appears as follows:

Header String: HEAD74

Pack Type: 0

Number of Bands: 7

Image Size (w x h): 512 x 512

The rio.lan file is a 512 x 512, 7-band image. The pack type of 0 indicates that each
sample is an 8-bit, unsigned integer (uint8 data type).

Reading the File

In a typical, in-memory workflow, you would read this LAN file with the
multibandread function. The LAN format stores the RGB data from the visible
spectrum in bands 3, 2, and 1, respectively. You could create a truecolor image for further
processing.

truecolor = multibandread('rio.lan', [512, 512, 7],...

   'uint8=>uint8', 128,'bil', 'ieee-le', {'Band','Direct',[3 2 1]});

For very large LAN files, however, reading and processing the entire image in memory
using multibandread can be impractical, depending on your system capabilities. To
avoid memory limitations, use the blockproc function. With blockproc, you can
process images with a file-based workflow. You can read, process, and then write the
results, one block at a time.

The blockproc function only supports reading and writing certain file formats, but it is
extensible via the ImageAdapter class. To write an Image Adapter class for a particular
file format, you must be able to:

• Query the size of the file on disk
• Read a rectangular block of data from the file

If you meet these two conditions, you can write an Image Adapter class for LAN files.
You can parse the image header to query the file size, and you can modify the call to
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multibandread to read a particular block of data. You can encapsulate the code for
these two objectives in an Image Adapter class structure, and then operate directly
on large LAN files with the blockproc function. The LanAdapter class is an Image
Adapter class for LAN files, and is part of the Image Processing Toolbox software.

Examining the LanAdapter Class

This section describes the constructor, properties, and methods of the LanAdapter class.
Studying the LanAdapter class helps prepare you for writing your own Image Adapter
class. If you are new to object-oriented programming, see “Developing Classes—Typical
Workflow” for general information on writing classes in the MATLAB documentation.

Open LanAdapter.m and look at the implementation of the LanAdapter class.

Classdef

The LanAdapter class begins with the keyword classdef. The classdef section
defines the class name and indicates that LanAdapter inherits from the ImageAdapter
superclass. Inheriting from ImageAdapter allows the new class to:

• Interact with blockproc
• Define common ImageAdapter properties
• Define the interface that blockproc uses to read and write to LAN files

Properties

Following the classdef section, the LanAdapter class contains two blocks of class
properties. The first block contains properties that are publicly visible, but not publicly
modifiable. The second block contains fully public properties. The LanAdapter class
stores some information from the file header as class properties. Other classes that also
inherit from ImageAdapter, but that support different file formats, can have different
properties.

classdef LanAdapter < ImageAdapter

   properties(GetAccess = public, SetAccess = private)

      Filename

      NumBands

   end

   properties(Access = public)

      SelectedBands

   end
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In addition to the properties defined in LanAdapter.m, the class inherits the ImageSize
property from the ImageAdapter superclass. The new class sets the ImageSize
property in the constructor.

Methods: Class Constructor

The class constructor initializes the LanAdapter object. The LanAdapter constructor
parses the LAN file header information and sets the class properties. Implement the
constructor, a class method, inside a methods block.

The constructor contains much of the same code used to parse the LAN file header. The
LanAdapter class only supports uint8 data type files, so the constructor validates
the pack type of the LAN file, as well as the header string. The class properties store
the remaining information. The method responsible for reading pixel data uses these
properties. The SelectedBands property allows you to read a subset of the bands, with
the default set to read all bands.

   methods

      function obj = LanAdapter(fname)

         % LanAdapter constructor for LanAdapter class.

         % When creating a new LanAdapter object, read the file

         % header to validate the file as well as save some image

         % properties for later use.

            

         % Open the file.

         obj.Filename = fname;

         fid = fopen(fname,'r');

         % Verify that the file begins with the string 'HEADER' or

         % 'HEAD74', as per the Erdas LAN file specification.

         header_str = fread(fid,6,'uint8=>char');

         if ~(strcmp(header_str','HEADER') || strcmp(header_str',...

               'HEAD74'))

            error('Invalid LAN file header.');

         end

         % Read the data type from the header.

         pack_type = fread(fid,1,'uint16',0,'ieee-le');

         if ~isequal(pack_type,0)

            error('Unsupported pack type. The LanAdapter example only...

               supports reading uint8 data.');

         end
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         % Provide band information.

         obj.NumBands = fread(fid,1,'uint16',0,'ieee-le');

         % By default, return all bands of data

         obj.SelectedBands = 1:obj.NumBands;

         % Specify image width and height.

         unused_field = fread(fid,6,'uint8',0,'ieee-le'); %#ok<NASGU>

         width = fread(fid,1,'uint32',0,'ieee-le');

         height = fread(fid,1,'uint32',0,'ieee-le');

         obj.ImageSize = [height width];

         % Close the file handle

         fclose(fid);

   end % LanAdapter 

Methods: Required

Adapter classes have two required methods defined in the abstract superclass,
ImageAdapter. All Image Adapter classes must implement these methods. The
blockproc function uses the first method, readRegion, to read blocks of data from
files on disk. The second method, close, performs any necessary cleanup of the Image
Adapter object.

   function data = readRegion(obj, region_start, region_size)

      % readRegion reads a rectangular block of data from the file.

      % Prepare various arguments to MULTIBANDREAD.

      header_size = 128;

      rows = region_start(1):(region_start(1) + region_size(1) - 1);

      cols = region_start(2):(region_start(2) + region_size(2) - 1);

 

      % Call MULTIBANDREAD to get data.

      full_size = [obj.ImageSize obj.NumBands];

      data = multibandread(obj.Filename, full_size,...

     'uint8=>uint8', header_size, 'bil', 'ieee-le',...

         {'Row',   'Direct', rows},...

         {'Column','Direct', cols},...

         {'Band',  'Direct', obj.SelectedBands});

 

   end % readRegion

readRegion has two input arguments, region_start and region_size. The
region_start argument, a two-element vector in the form [row col], defines the first
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pixel in the request block of data. The region_size argument, a two-element vector in
the form [num_rows num_cols], defines the size of the requested block of data. The
readRegion method uses these input arguments to read and return the requested block
of data from the image.

The readRegion method is implemented differently for different file formats, depending
on what tools are available for reading the specific files. The readRegion method
for the LanAdapter class uses the input arguments to prepare custom input for
multibandread. For LAN files, multibandread provides a convenient way to read
specific subsections of an image.

The other required method is close. The close method of the LanAdapter class
appears as follows:

      function close(obj) %#ok<MANU>

      % Close the LanAdapter object. This method is a part

      % of the ImageAdapter interface and is required.

      % Since the readRegion method is "atomic", there are

      % no open file handles to close, so this method is empty.

      end

        

   end % public methods

    

end % LanAdapter

As the comments indicate, the close method for LanAdapter has nothing to do, so
close is empty. The multibandread function does not require maintenance of open
file handles, so the close method has no handles to clean up. Image Adapter classes
for other file formats may have more substantial close methods including closing file
handles and performing other class clean-up responsibilities.

Methods (Optional)

As written, the LanAdapter class can only read LAN files, not write them. If you want to
write output to a LAN format file, or another file with a format that blockproc does not
support, implement the optional writeRegion method. Then, you can specify your class
as a 'Destination' parameter in blockproc and write output to a file of your chosen
format.

The signature of the writeRegion method is as follows:

function [] = writeRegion(obj, region_start, region_data)
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The first argument, region_start, indicates the first pixel of the block that the
writeRegion method writes. The second argument, region_data, contains the new
data that the method writes to the file.

Classes that implement the writeRegion method can be more complex than
LanAdapter. When creating a writable Image Adapter object, classes often have the
additional responsibility of creating new files in the class constructor. This file creation
requires a more complex syntax in the constructor, where you potentially need to specify
the size and data type of a new file you want to create. Constructors that create new files
can also encounter other issues, such as operating system file permissions or potentially
difficult file-creation code.

Using the LanAdapter Class with blockproc

Now that you understand how the LanAdapter class works, you can use it to enhance
the visible bands of a LAN file. Run the Computing Statistics for Large Images
(BlockProcessStatisticsExample) example to see how the blockproc function works with
the LanAdapter class.
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Using Columnwise Processing to Speed Up Sliding Neighborhood
or Distinct Block Operations

In this section...

“Understanding Columnwise Processing” on page 15-23
“Using Column Processing with Sliding Neighborhood Operations” on page 15-23
“Using Column Processing with Distinct Block Operations” on page 15-24

Understanding Columnwise Processing

Performing sliding neighborhood and distinct block operations columnwise, when
possible, can reduce the execution time required to process an image.

For example, suppose the operation you are performing involves computing the mean
of each block. This computation is much faster if you first rearrange the blocks into
columns, because you can compute the mean of every column with a single call to the
mean function, rather than calling mean for each block individually.

To use column processing, use the colfilt function . This function

1 Reshapes each sliding or distinct block of an image matrix into a column in a
temporary matrix

2 Passes the temporary matrix to a function you specify
3 Rearranges the resulting matrix back into the original shape

Using Column Processing with Sliding Neighborhood Operations

For a sliding neighborhood operation, colfilt creates a temporary matrix that has
a separate column for each pixel in the original image. The column corresponding to a
given pixel contains the values of that pixel's neighborhood from the original image.

The following figure illustrates this process. In this figure, a 6-by-5 image matrix is
processed in 2-by-3 neighborhoods. colfilt creates one column for each pixel in the
image, so there are a total of 30 columns in the temporary matrix. Each pixel's column
contains the value of the pixels in its neighborhood, so there are six rows. colfilt zero-
pads the input image as necessary. For example, the neighborhood of the upper left pixel
in the figure has two zero-valued neighbors, due to zero padding.
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colfilt Creates a Temporary Matrix for Sliding Neighborhood

The temporary matrix is passed to a function, which must return a single value for each
column. (Many MATLAB functions work this way, for example, mean, median, std,
sum, etc.) The resulting values are then assigned to the appropriate pixels in the output
image.

colfilt can produce the same results as nlfilter with faster execution time;
however, it might use more memory. The example below sets each output pixel to the
maximum value in the input pixel's neighborhood, producing the same result as the
nlfilter example shown in “Implementing Linear and Nonlinear Filtering as Sliding
Neighborhood Operations” on page 15-5.

I2 = colfilt(I,[3 3],'sliding',@max);

Using Column Processing with Distinct Block Operations

For a distinct block operation, colfilt creates a temporary matrix by rearranging each
block in the image into a column. colfilt pads the original image with 0's, if necessary,
before creating the temporary matrix.

The following figure illustrates this process. A 6-by-16 image matrix is processed in
4-by-6 blocks. colfilt first zero-pads the image to make the size 8-by-18 (six 4-by-6
blocks), and then rearranges the blocks into six columns of 24 elements each.
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colfilt Creates a Temporary Matrix for Distinct Block Operation

After rearranging the image into a temporary matrix, colfilt passes this matrix to the
function. The function must return a matrix of the same size as the temporary matrix.
If the block size is m-by-n, and the image is mm-by-nn, the size of the temporary matrix
is (m*n)-by-(ceil(mm/m)*ceil(nn/n)). After the function processes the temporary
matrix, the output is rearranged into the shape of the original image matrix.

This example sets all the pixels in each 8-by-8 block of an image to the mean pixel value
for the block.

I = im2double(imread('tire.tif'));

f = @(x) ones(64,1)*mean(x);

I2 = colfilt(I,[8 8],'distinct',f);
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The anonymous function in the example computes the mean of the block and then
multiplies the result by a vector of ones, so that the output block is the same size as the
input block. As a result, the output image is the same size as the input image.

Restrictions

You can use colfilt to implement many of the same distinct block operations that
blockproc performs. However, colfilt has certain restrictions that blockproc does
not:

• The output image must be the same size as the input image.
• The blocks cannot overlap.

For situations that do not satisfy these constraints, use blockproc.
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Processing Toolbox Functions
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• “Code Generation Using a Shared Library” on page 16-25
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Code Generation for Image Processing

Certain Image Processing Toolbox functions have been enabled to generate C code using
MATLAB Coder™. To use code generation with image processing functions, follow these
steps:

• Write your MATLAB function or application as you would normally, using functions
from the Image Processing Toolbox.

• Add the %#codegen compiler directive to your MATLAB code.
• Open the MATLAB Coder app, create a project, and add your file to the project. Once

in MATLAB Coder, you can check the readiness of your code for code generation. For
example, your code may contain functions that are not enabled for code generation.
Make any modifications required for code generation.

• Generate code by clicking Build on the Build tab of the MATLAB Coder app. You can
choose to build a MEX file, a shared library, a dynamic library, or an executable.

Even if you addressed all readiness issues identified by MATLAB Coder, you might
still encounter build issues. The readiness check only looks at function dependencies.
When you try to generate code, MATLAB Coder might discover coding patterns
that are not supported for code generation. View the error report and modify your
MATLAB code until you get a successful build.

For more information about code generation, see the MATLAB Coder documentation.
To see an example of using code generation, see “Generate Code from Application
Containing Image Processing Functions” on page 16-11.

Note: To generate code from MATLAB code that contains image processing functions,
you must have the MATLAB Coder software.

When working with generated code, note the following:

• For some Image Processing Toolbox functions, code generation depends on a
precompiled, platform-specific shared library.
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List of Supported Functions with Usage Notes

The following table lists the Image Processing Toolbox functions that have been enabled
for code generation. You must have the MATLAB Coder software installed to generate C
code from MATLAB for these functions.

Image Processing Toolbox provides three types of code generation support:

• Functions that generate C code.
• Functions that generate C code that depends on a platform-specific shared library

(.dll, .so, or .dylib). Use of a shared library preserves performance optimizations
in these functions, but this limits the target platforms for which you can generate
code. For more information, see “Code Generation for Image Processing”.

• Functions that generate C code or C code that depends on a shared library, depending
on which target platform you specify in MATLAB Coder. If you specify the generic
MATLAB Host Computer target platform, these functions generate C code that
depends on a shared library. If you specify any other target platform, these functions
generate C code.

In generated code, each supported toolbox function has the same name, arguments, and
functionality as its Image Processing Toolbox counterpart. However, some functions have
limitations. The following table includes information about code generation limitations
that might exist for each function. In the following table, all the functions generate C
code. The table identifies those functions that generate C code that depends on a shared
library, and those functions that can do both, depending on which target platform you
choose.

Function Remarks/Limitations

affine2d When generating code, you can only specify single objects—arrays of
objects are not supported.

bwdist The method argument must be a compile-time constant. Input images
must have fewer than 232 pixels.

Generated code for this function uses a precompiled, “platform-specific
shared library”.

bwlookup For best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.
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Function Remarks/Limitations

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

bwpack Generated code for this function uses a precompiled “platform-specific
shared library”.

bwselect Supports only the 3 and 4 input argument syntaxes: BW2 =
bwselect(BW,c,r) and BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-time constant. In addition,
with code generation, bwselect only supports only the 1 and 2 output
argument  syntaxes: BW2 = bwselect(___) or [BW2, idx] =
bwselect(___).

Generated code for this function uses a precompiled “platform-specific
shared library”.

bwtraceboundary The dir, fstep, and conn arguments must be compile-time constants.
bwunpack Generated code for this function uses a precompiled “platform-specific

shared library”.
conndef Input arguments must be compile-time constants.
edge The method, direction, and sigma arguments must be a compile-

time constants. In addition, nonprogrammatic syntaxes are not
supported. For example, the syntax edge(im), where edge does not
return a value but displays an image instead, is not supported.

Generated code for this function uses a precompiled “platform-specific
shared library”.

fitgeotrans The transformtype argument must be a compile-time constant.
The function supports the following transformation types:
'nonreflectivesimilarity', 'similarity', 'affine', or
'projective'.

fspecial Inputs must be compile-time constants. Expressions or variables are
allowed if their values do not change.

getrangefromclass —
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Function Remarks/Limitations

histeq All the syntaxes that include indexed images are not supported. This
includes all syntaxes that accept map as input and return newmap.

Generated code for this function uses a precompiled “platform-specific
shared library”.

im2uint8 Generated code for this function uses a precompiled “platform-specific
shared library”.

im2uint16 Generated code for this function uses a precompiled “platform-specific
shared library”.

im2int16 Generated code for this function uses a precompiled “platform-specific
shared library”.

im2single —
im2double —
imadjust Does not support syntaxes that include indexed images. This includes

all syntaxes that accept map as input and return newmap.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imbothat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imclearborder The optional second input argument, conn, must be a compile-time
constant. Supports only up to 3-D inputs.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imclose The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imcomplement Does not support int64 and uint64 data types.
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Function Remarks/Limitations

imdilate The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imerode The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imextendedmax The optional third input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imextendedmin The optional third input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.
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Function Remarks/Limitations

imfill The optional input connectivity, conn and the string 'holes' must be
compile-time constants.

Supports only up to 3-D inputs.

The interactive mode to select points, imfill(BW,0,CONN) is not
supported in code generation.

locations can be a P-by-1 vector, in which case it contains the
linear indices of the starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row contains the array indices
of one of the starting locations. Once you select a format at compile-
time, you cannot change it at run time. However, the number of points
in locations can be varied at run time.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imfilter The input image can be either 2-D or 3-D. The value of the input
argument, options, must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imhist The optional second input argument, n, must be a compile-time
constant. In addition, nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist displays the histogram are
not supported.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imhmax The optional third input argument, conn, must be a compile-time
constant

Generated code for this function uses a precompiled “platform-specific
shared library”.
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Function Remarks/Limitations

imhmin The optional third input argument, conn, must be a compile-time
constant

Generated code for this function uses a precompiled “platform-specific
shared library”.

imlincomb The output_class argument must be a compile-time constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imopen The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imquantize —
imreconstruct The optional third input argument, conn, must be a compile-time

constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imref2d The XWorldLimits, YWorldLimits and ImageSize properties can be
set only during object construction. When generating code, you can only
specify single objects—arrays of objects are not supported.

imref3d The XWorldLimits, YWorldLimits, ZWorldLimits and ImageSize
properties can be set only during object construction. When generating
code, you can only specify single objects—arrays of objects are not
supported.

imregionalmax The optional second input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.
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Function Remarks/Limitations

imregionalmin The optional second input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.

imtophat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, “platform-specific shared library”.

imwarp The geometric transformation object input, tform, must be either
affine2d or projective2d. Additionally, the interpolation method
and optional parameter names must be string constants.

Generated code for this function uses a precompiled “platform-specific
shared library”.

intlut Generated code for this function uses a precompiled “platform-specific
shared library”.

iptcheckconn Input arguments must be compile-time constants.
iptcheckmap —
label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.
mean2 —
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Function Remarks/Limitations

medfilt2 The padopt argument must be a compile-time constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.

multithresh —
ordfilt2 The padopt argument must be a compile-time constant.

Generated code for this function uses a precompiled “platform-specific
shared library”.

padarray Support only up to 3-D inputs.

Input arguments, padval and direction are expected to be compile-
time constants.

projective2d When generating code, you can only specify single objects—arrays of
objects are not supported.

rgb2ycbcr —
strel Input arguments must be compile-time constants. The following

methods are not supported for code generation: getsequence,
reflect, translate, disp, display, loadobj. When generating
code, you can only specify single objects—arrays of objects are not
supported.

stretchlim Generated code for this function uses a precompiled “platform-specific
shared library”.

ycbcr2rgb —

More About
• “MATLAB Coder”
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Generate Code from Application Containing Image Processing
Functions

This example shows how to generate C code using MATLAB Coder from MATLAB
applications that use Image Processing Toolbox functions. The example describes how to
setup your MATLAB environment, prepare your MATLAB code for code generation, and
work around any issues that you might encounter in your MATLAB code that prevent
code generation.

In this section...

“Setup Your Compiler” on page 16-11
“Prepare Your MATLAB Code for Code Generation” on page 16-12
“Generate Code” on page 16-18

Setup Your Compiler

This example shows how to specify which C/C++ compiler you want to use with MATLAB
Coder to generate code.

Use the mex function with the -setup option to specify the C/C++ compiler you want to
use with MATLAB Coder.

mex -setup

MEX configured to use 'Microsoft Visual C++ 2010 (C)' for C language compilation.

Warning: The MATLAB C and Fortran API has changed to support MATLAB variables with more than 2^32-1 elements.  In the near future you will be required to update your code to utilize the new API. You can find more information about this at: http://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.

To choose a different C compiler, select one from the following:

Microsoft Visual C++ 2010 (C)  mex -setup:C:\matlab\bin\win64\mexopts\msvc2010.xml C

Intel Visual C++ 12 with Microsoft Visual Studio 2008 (C)  mex -setup:C:\matlab\bin\win64\mexopts\intel_c_12_vs2008.xml C

Intel Visual C++ 12 with Microsoft Visual Studio 2010 (C)  mex -setup:C:\matlab\bin\win64\mexopts\intel_c_12_vs2010.xml C

To choose a different language, select one from the following:

 mex -setup C++ 
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 mex -setup FORTRAN

Prepare Your MATLAB Code for Code Generation

This example shows how to use the MATLAB Coder app to evaluate your code’s readiness
for code generation. For example, the code may use functions that are not enabled for
code generation.

For this example, copy the following code into a file and save it, giving it the name
cellDetectionMATLAB.m. This code is a modified version of the Image Processing
Toolbox example Detecting a Cell Using Image Segmentation (Detecting a Cell Using
Image Segmentation). To illustrate code generation, this version of the example removes
the display code.

function BWfinal = cellDetectionMATLAB(I)

%cellDetectionMATLAB - detect cells using image segmentation.

[~, threshold] = edge(I, 'sobel');

fudgeFactor = .5;

BWs = edge(I,'sobel', threshold * fudgeFactor);

figure

imshow(BWs)

title('binary gradient mask');

se90 = strel('line', 3, 90);

se0 = strel('line', 3, 0);

BWsdil = imdilate(BWs, [se90 se0]);

figure

imshow(BWsdil)

title('dilated gradient mask');

BWdfill = imfill(BWsdil, 'holes');

figure

imshow(BWdfill);

title('binary image with filled holes');

BWnobord = imclearborder(BWdfill, 4);

figure

imshow(BWnobord)

title('cleared border image');

seD = strel('diamond',1);
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BWfinal = imerode(BWnobord,seD);

BWfinal = imerode(BWfinal,seD);

figure

imshow(BWfinal)

title('segmented image');

Test the example code with a sample image. For this example, use the cell.tif file,
included with the Image Processing Toolbox (matlab\toolbox\images\imdata
\cell.tif).

I = imread('cell.tif');

Iseg = cellDetectionMATLAB(I);

% Display the original image and the segmented image side-by-side.

imshowpair(I,Iseg,'montage')

Create a copy of the MATLAB function for which you want to generate C code. Since you
modify this code for code generation, it is good to work with a copy.

copyfile('cellDetectionMATLAB.m','cellDetectionCodeGeneration.m');

As a first step, change the name of the function in the function signature to match the
file name and add the MATLAB Coder compilation directive %#codegen at the end of
the function signature. This directive instructs the MATLAB code analyzer to diagnose
issues that would prohibit successful code generation.
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function BWfinal = cellDetectionCodeGeneration(I) %#codegen

.

.

.

Open the MATLAB Coder app. In MATLAB, select the Apps tab, navigate to Code
Generation and cliCeck the MATLAB Coder app. (Alternatively, you can enter coder at
the MATLAB command prompt.)

In the MATLAB Coder Project dialog, create a new code generation project. This example
names the project cellDetection.prj. Click OK to create the project and open the
MATLAB Coder dialog box.

Add your MATLAB code file to the project. Click Add files and, for this example, select
cellDetectionCodeGeneration.m.
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Define the size and data type of the inputs to your function. When you add the file,
MATLAB Coder determines the input arguments required by your file and populates
the entry-point area. Every input must be specified to be of fixed size, variable size or a
constant. For this example, the function accepts one input—an image I. To define the
size of this input image, click the Click to define label.

There are several ways to specify the size of your input argument. For fixed size inputs,
choose the class and size of the input. For variable-sized inputs, select the class and
specify the upper bound on the size. For an unbounded input, select the unbounded
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option (:Inf). To define a constant, choose the Define Constant option. This example
specifies the size and class of the input by providing MATLAB Coder with an example of
the input. Click Define by Example and specify the example imread('cell.tif').
(For more information about defining inputs, see the MATLAB Coder documentation.)

After you specify the size and class of the input, MATLAB Coder displays the View code
generation readiness issues option, if it finds issues that need addressing. Click this
option to view issues that prevent you from generating code.
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MATLAB Coder opens the Project Code Generation Readiness dialog, providing a
readiness score and a list of issues that must be addressed. For this example, MATLAB
Coder highlights one issue: the example code uses a function (imshow) that has not been
enabled for code generation.

To address this readiness issue, you must remove the calls to imshow. This function
isn’t necessary for the segmentation operation. Modify the example code file,
cellDetectionCodeGeneration.m, removing all the calls to imshow and related
functions.

function BWfinal = cellDetectionCodeGeneration(I) %#codegen

%cellDetectionMATLAB - detect cells using image segmentation.

[~, threshold] = edge(I, 'sobel');

fudgeFactor = .5;

BWs = edge(I,'sobel', threshold * fudgeFactor);

se90 = strel('line', 3, 90);

se0 = strel('line', 3, 0);
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BWsdil = imdilate(BWs, [se90 se0]);

BWdfill = imfill(BWsdil, 'holes');

BWnobord = imclearborder(BWdfill, 4);

seD = strel('diamond',1);

BWfinal = imerode(BWnobord,seD);

BWfinal = imerode(BWfinal,seD);

When you have addressed all readiness issues, the MATLAB Coder dialog no longer
displays the View code generation readiness issues link.

Generate Code

This example shows how to generate C code from MATLAB code, using MATLAB Coder.
Note that, even though you performed the MATLAB Coder readiness checks, additional
issues might arise during the build process that can prevent code generation. While the
readiness checks look at function dependencies to determine readiness, the build process
examines coding patterns. This example illustrates how to address issues that arise in
the build process that prevent successful code generation.

Select the Build tab and click Build.
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Initially, the build fails.

Click Open Error Report to get details of the errors. The report lists the errors and
uses red underlining to highlight the location of errors in the source code. For this
example, the first error indicates that on line 11 the code passes in an array of objects
and code generation does not support arrays of objects passed as arguments. The
remaining errors are a result of this first error.
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Address issues identified in the report. For this example, you must modify the call to
imdilate to avoid passing an array of strel objects. This is accomplished by replacing
the single call to imdilate, where the example passes an array of strel objects, with two
separate calls to imdilate, highlighted in the following figure.
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With that change, the build process succeeds and MATLAB Coder generates code.
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By default, MATLAB Coder generates a MEX function with the name
cellDetectionCodeGeneration_mex, but you can choose to generate other types of
code. Use the Output type menu to generate a C/C++ static library, dynamic library, or
standalone executable. MATLAB Coder creates a codegen subfolder in your work folder
that contains the generated output. For more information about generating code, see the
MATLAB Coder documentation.

Test your code. Run the mex version of your function and then compare the output with
the regular MATLAB code.

im = imread('cell.tif');

out = cellDetectionCodeGeneration_mex(im);

imshow(out);

isequal(out,cellDetectionMATLAB(im))

ans =

     1
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If you chose the C/C++ Dynamic Library option, MATLAB Coder generates the following
interface. This interface can be used to integrate with an external application:

type codegen\dll\cellDetectionCodeGeneration\cellDetectionCodeGeneration.h

/*

 * cellDetectionCodeGeneration.h

 *

 * Code generation for function 'cellDetectionCodeGeneration'

 *

 */

#ifndef __CELLDETECTIONCODEGENERATION_H__

#define __CELLDETECTIONCODEGENERATION_H__

/* Include files */

#include <math.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include "rtwtypes.h"

#include "cellDetectionCodeGeneration_types.h"

/* Function Declarations */

#ifdef __cplusplus

extern "C" {

#endif

extern void cellDetectionCodeGeneration(const unsigned char I[30369], boolean_T BWfinal[30369]);

#ifdef __cplusplus

}

#endif

#endif

/* End of code generation (cellDetectionCodeGeneration.h) */

The function signature exposed indicates there are two inputs. The first input I is
expected to be an unsigned char with 30369 elements. This is used to pass the
input image on which cell detection is to be performed. The type of the input image in
MATLAB (uint8) is represented as an unsigned char. The size of the image is 159
x 191, i.e. 30369 elements. The number of elements is specified through the interface
since the input was defined to be fixed size. The second input BWfinal is expected to be a
boolean_T with 30369 elements. This is used to pass a pointer to the output image.
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Note that there is a difference in the way MATLAB and C store arrays in memory.
MATLAB stores arrays in column-major order and C stores arrays in row-major order. To
illustrate, consider the following array:

[ 1  2

  3  4 ]

MATLAB stores the array in memory as [1 3 2 4 ] where C stores the elements as [1
2 3 4 ]. You must account for this difference when working with arrays.

You can also generate a standalone executable using the "C/C++ Executable" option.
In this case a main function that invokes the generated code must be specified. Note
that there are no ready-made utilities for importing data. For an example, refer to the
Using Dynamic Memory Allocation for an "Atoms" Simulation in the MATLAB Coder
documentation.

More About
• “Code Generation Workflow”
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Code Generation Using a Shared Library

The Image Processing Toolbox includes many functions that support the generation of
efficient, C/C++ code using MATLAB Coder. These functions support code generation in
several ways:

• Some functions generate standalone C/C++ code that can be incorporated into
applications that run on many platforms, such as ARM processors.

• Some functions generate C/C++ code that use a platform-specific shared library. The
Image Processing Toolbox uses this shared library approach to preserve performance
optimizations, but this limits the platforms on which you can run this code to only
platforms that can host MATLAB. To view a list of host platforms, see system
requirements.

• Some functions can generate either standalone C/C++ code or code that depends on
a shared library, depending upon which target you choose in the MATLAB Coder
configuration settings. If you choose the generic MATLAB Host Computer option,
these functions deliver code that uses a shared library. If you choose any other
platform option, these functions deliver portable C/C++ code.

The following diagram illustrates the difference between generating portable C/C++ code
and generating code that uses a shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/


16 Code Generation for Image Processing Toolbox Functions

16-26

For a complete list of Image Processing Toolbox that support code generation, with
information about the type of code generated, see “List of Supported Functions with
Limitations and Other Notes”
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GPU Computing with Image
Processing Toolbox Functions

• “Image Processing on a GPU” on page 17-2
• “List of Supported Functions with Limitations and Other Notes” on page 17-4
• “Perform Thresholding and Morphological Operations on a GPU” on page 17-7
• “Perform Element-wise Operations on a GPU” on page 17-11
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Image Processing on a GPU

To take advantage of the performance benefits offered by a modern Graphics Processing
Unit (GPU), certain Image Processing Toolbox functions have been enabled to
perform image processing operations on a GPU. This can provide GPU acceleration
for complicated image processing workflows. These techniques can be implemented
exclusively or in combination to satisfy design requirements and performance goals. To
perform an image processing operation on a GPU, follow these steps:

• Move the data from the CPU to the GPU. You do this by creating an object of type
gpuArray, using the gpuArray function.

• Perform the image processing operation on the GPU. Any toolbox function that
accepts a gpuArray object as an input can work on a GPU. For example, you can pass
a gpuArray to the imfilter function to perform the filtering operation on a GPU. For
a list of all the toolbox functions that have been GPU-enabled, see “List of Supported
Functions with Limitations and Other Notes” on page 17-4.

• Move the data back onto the CPU from the GPU. Applications typically move the data
from the GPU back to the CPU after processing, using the gather function.

For more information:

• For general information about using GPUs, see “Transfer Arrays Between Workspace
and GPU”.

• To see an example of performing image processing operations on a GPU, see “Perform
Thresholding and Morphological Operations on a GPU” on page 17-7.

• To see an example of using the MATLAB arrayfun function to perform element-wise
or pixel based operations on a GPU, see “Perform Element-wise Operations on a GPU”
on page 17-11.

• To learn about integrating custom CUDA kernels directly into MATLAB to accelerate
complex algorithms, see “Run CUDA or PTX Code on GPU”.

.

Note: To run image processing code on a graphics processing unit (GPU), you must have
the Parallel Computing Toolbox software.

When working with a GPU, note the following:
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• Performance improvements can depend on the GPU device.
• There may be small differences in the results returned on a GPU from those returned

on a CPU.
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List of Supported Functions with Limitations and Other Notes

The following table lists all the Image Processing Toolbox functions that have been
enabled to run on a GPU. In most cases, the functions support the same syntaxes and
operate the same, but in some cases there are certain differences. This table lists these
limitations, if any.

Function Remarks/Limitations

bwdist Inputs must be 2-D and have less than 232-1 elements. Euclidean is the
only distance metric supported.

bwlabel —
bwlookup —
bwmorph —
corr2 —
edge Canny method is not supported on the GPU.
histeq —
im2double —
im2int16 —
im2single —
im2uint8 —
im2uint16 —
imabsdiff Only single and double are supported
imadjust —
imbothat gpuArray input must be of type uint8 or logical and the structuring

element must be flat and two-dimensional.
imclose gpuArray input must be of type uint8 or logical and the structuring

element must be flat and two-dimensional.
imcomplement —
imdilate gpuArray input must be of type uint8 or logical and the structuring

element must be flat and two-dimensional

The PACKOPT syntaxes are not supported on the GPU.
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Function Remarks/Limitations

imerode gpuArray input must be of type uint8 or logical and the structuring
element must be flat and two-dimensional

The PACKOPT syntaxes are not supported on the GPU.
imfill Inputs must be 2-D, supporting only the 2-D connectivities, 4 and 8.

Does not support the interactive hole filling syntax.
imfilter Input kernel must be 2-D
imgradient —
imgradientxy —
imhist When running on a GPU, imhist does not display the histogram. To

display the histogram, use stem(X,counts).
imlincomb —
imnoise —
imopen gpuArray input must be of type uint8 or logical and the structuring

element must be flat and two-dimensional.
imreconstruct —
imregdemons The parameter 'PyramidLevels' is not supported on the GPU.
imresize Only cubic interpolation is supported on GPU and function always

performs antialiasing.
imrotate The 'bicubic' interpolation mode used in the GPU implementation

of this function differs from the default (CPU) bicubic mode. The GPU
and CPU versions of this function are expected to give slightly different
results.

imshow —
imtophat gpuArray input must be of type uint8 or logical and the structuring

element must be flat and two-dimensional.
iradon The GPU implementation of this function supports only Nearest-

neighbor and linear interpolation methods.
mat2gray —
mean2 —
medfilt2 Padding options are not supported on the GPU
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Function Remarks/Limitations

normxcorr2 —
padarray —
radon —
rgb2gray —
rgb2ycbcr —
std2 —
stdfilt —
stretchlim —
ycbcr2rgb —
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Perform Thresholding and Morphological Operations on a GPU

This example shows how to perform image processing operations on a GPU. The example
uses filtering to highlight the watery areas in a large aerial photograph.

Read an image into the workspace.

imCPU = imread('concordaerial.png');

Move the image to the GPU by creating a gpuArray object.

imGPU = gpuArray(imCPU);

As a preprocessing step, change the RGB image to a grayscale image. Because you are
passing it a gpuArray, rgb2gray performs the conversion operation on a GPU. If you
pass a gpuArray as an argument, a function that has been GPU-enabled performs the
operation on the GPU.

imGPUgray = rgb2gray(imGPU);

View the image in the Image Viewer and inspect the pixel values to find the value of
watery areas. Note that you must bring the image data back onto the CPU, using the
gather function, to use the Image Viewer. As you move the mouse over the image, you
can view the value of the pixel under the cursor at the bottom of the Image Viewer. In the
image, areas of water have pixel values less than 70.

imtool(gather(imGPUgray));
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Filter the image on the GPU to get a new image that contains only the pixels with values
of 70 or less and view it.

imWaterGPU = imGPUgray<70;
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figure;imshow(imWaterGPU);

Using morphological operators that are supported on the GPU, clean up the mask image,
removing points that do not represent water.

imWaterMask = imopen(imWaterGPU,strel('disk',4));

imWaterMask = bwmorph(imWaterMask,'erode',3);

Blur the mask image, using imfilter.

blurH       = fspecial('gaussian',20,5);

imWaterMask = imfilter(single(imWaterMask)*10, blurH);

Boost the blue channel to identify the watery areas.
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blueChannel  = imGPU(:,:,3);

blueChannel  = imlincomb(1, blueChannel,6, uint8(imWaterMask));

imGPU(:,:,3) = blueChannel;

View the result. The imshow function can work with images on the GPU.

figure;imshow(imGPU);

After filtering the image on the GPU, move the data back to the CPU., using the gather
function, and write the modified image to a file.

outCPU       = gather(imGPU);

imwrite(outCPU,'concordwater.png');
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Perform Element-wise Operations on a GPU

This example shows how to perform element-wise, or pixel-based, operations on a GPU
by using functions that send both the data and operations to the GPU for processing.
This method is most effective for element-wise operations that require 2 or more data
sets.

Move the data from the CPU to the GPU by creating a gpuArray

I = imread('concordaerial.png');

Igpu = gpuArray(I); 

Create a custom function that performs element-wise operations. This example creates a
custom grayscale conversion function using weighted RGB data.

function gray = rgb2gray_custom(r,g,b)

gray = 0.5*r + 0.25*g + 0.25*b;

Perform the operation on the GPU. Use arrayfun to pass the handle to the custom
function and data object to the GPU for evaluation.

Igray_gpu = arrayfun(@rgb2gray_custom,Igpu(:,:,1),Igpu (:,:,2),Igpu(:,:,3));

Move the data back to the CPU from the GPU, using the gather function.

I_gpuresult = gather(Igray_gpu);
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